Skip to main content
Log in

Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

α, ω-Dicarboxylic acids (DCAs) are multipurpose chemicals widely used in polymers, perfumes, plasticizers, lubricants, and adhesives. The biotransformation of DCAs from alkanes and fatty acids by microorganisms has attracted recent interest, since synthesis via chemical oxidation causes problems in terms of the environment and safety. We isolated an ω-oxidizing yeast from a wastewater disposal facility of a petrochemical factory by chemostat enrichment culture. The haploid strain identified as Candida sorbophila DS02 grew on glucose and dodecane, exhibiting greater cell shrinkage on the latter. In flask cultures with mixed alkanes (C10–16) and fatty acid methyl esters (C10–16), DS02 used mixed alkanes simultaneously unlike Candida tropicalis and Yarrowia lipolytica and showed high substrate resistance. In flask cultures with acrylic acid—a known inhibitor of β-oxidation—DS02 produced 0.28 g/l dodecanedioic acid (DDDA) from dodecane, similar to wild-type C. tropicalis ATCC 20336. In fed-batch fermentation, DS02 produced 9.87 g/l DDDA, which was 5.7-fold higher than wild-type C. tropicalis. These results suggest that C. sorbophila strain DS02 has potential applications for the large-scale production of DCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandre H, Mathieu B, Charpentier C (1996) Alteration in membrane fluidity and lipid composition, and modulation of H+-ATPase activity in Saccharomyces cerevisiae caused by decanoic acid. Microbiology 142:469–475

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Gao H, Liu M, Jiao P (2006) Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid. Biotechnol J 1:68–74

    Article  CAS  PubMed  Google Scholar 

  • Cornils B, Lappe P, Staff U (2014) Dicarboxylic acids, aliphatic. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 1–18

    Google Scholar 

  • Craft DL, Madduri KM, Eshoo M, Wilson CR (2003) Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to α, ω-dicarboxylic acids. Appl Environ Microbiol 69:5983–5991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eirich LD, Craft DL, Steinberg L, Asif A, Eschenfeldt WH, Stols L, Donnelly MI, Wilson CR (2004) Cloning and characterization of three fatty alcohol oxidase genes from Candida tropicalis strain ATCC 20336. Appl Environ Microbiol 70:4872–4879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschenfeldt WH, Zhang Y, Samaha H, Stols L, Eirich LD, Wilson CR, Donnelly MI (2003) Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis. Appl Environ Microbiol 69:5992–5999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fickers P, Benetti P-H, Wache Y, Marty A, Mauersberger S, Smit M, Nicaud J-M (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  CAS  PubMed  Google Scholar 

  • Fukuda R (2013) Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. Biosci Biotechnol Biochem 77:1149–1154

    Article  CAS  PubMed  Google Scholar 

  • Granot D, Levine A, Dor-Hefetz E (2003) Sugar-induced apoptosis in yeast cells. FEMS Yeast Res 4:7–13

    Article  CAS  PubMed  Google Scholar 

  • Haase SB, Reed SI (2002) Improved flow cytometric analysis of the budding yeast cell cycle. Cell Cycle 1:117–121

    Article  Google Scholar 

  • Hettema EH, Tabak HF (2000) Transport of fatty acids and metabolites across the peroxisomal membrane. Biochim Biophys Acta 1486:18–27

    Article  CAS  PubMed  Google Scholar 

  • Huf S, Krügener S, Hirth T, Rupp S, Zibek S (2011) Biotechnological synthesis of long-chain dicarboxylic acids as building blocks for polymers. Eur J Lipid Sci Technol 113:548–561

    Article  CAS  Google Scholar 

  • Iwama R, Kobayashi S, Ishimaru C, Ohta A, Horiuchi H, Fukuda R (2016) Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet Biol 91:43–54

    Article  CAS  PubMed  Google Scholar 

  • Kothavade RJ, Kura M, Valand AG, Panthaki M (2010) Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol 59:873–880

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  • Lee H-W, Yoon S-J, Kim H-K, Park K-M, Oh T-K, Jung J-K (2000) Overexpression of an alkaline lipase gene from Proteus vulgaris K80 in Escherichia coli BL21/pKLE. Biotechnol Lett 22:1543–1547

    Article  CAS  Google Scholar 

  • Liu P, Chernyshov A, Najdi T, Fu Y, Dickerson J, Sandmeyer S, Jarboe L (2013) Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97:3239–3251

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Li C, Fang X, Za C (2004) Optimal pH control strategy for high-level production of long-chain α, ω-dicarboxylic acid by Candida tropicalis. Enzym Microb Technol 34:73–77

    Article  CAS  Google Scholar 

  • Lu X, Zhang J, Wu Q, Chen G-Q (2003) Enhanced production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) via manipulating the fatty acid β-oxidation pathway in E. coli. FEMS Microbiol Lett 221:97–101

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Wang J, Liu B, Wang Z, Yuan Y, Yue T (2015) Effect of yeast cell morphology, cell wall physical structure and chemical composition on patulin adsorption. PLoS One 10:e0136045

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra P, Park GY, Lakshmanan M, Lee HS, Lee H, Chang MW, Ching CB, Ahn J, Lee DY (2016) Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production. Biotechnol Bioeng 113:1993–2004

    Article  CAS  PubMed  Google Scholar 

  • Munoz AJ, Wanichthanarak K, Meza E, Petranovic D (2012) Systems biology of yeast cell death. FEMS Yeast Res 12:249–265

    Article  CAS  PubMed  Google Scholar 

  • Nakase T (1975) Three new asporogenous yeasts found in industrial waste water. Antonie Van Leeuwenhoek 41:201–210

    Article  CAS  PubMed  Google Scholar 

  • Picataggio S, Rohrer T, Deanda K, Lanning D, Reynolds R, Mielenz J, Eirich LD (1992) Metabolic engineering of Candida tropicalis for the production of long–chain dicarboxylic acids. Nat Biotechnol 10:894–898

    Article  CAS  Google Scholar 

  • Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Factories 7:1

    Article  Google Scholar 

  • Qi Q, Steinbüchel A, Rehm BH (1998) Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid β-oxidation by acrylic acid. FEMS Microbiol Lett 167:89–94

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (1995) The isolation, preservation and improvement of industrially important micro-organisms. In: Principles of fermentation technology, 2nd edn. Pergamon Press, Oxford, pp 35–91

    Chapter  Google Scholar 

  • Świzdor A, Panek A, Milecka-Tronina N, Kołek T (2012) Biotransformations utilizing β-oxidation cycle reactions in the synthesis of natural compounds and medicines. Int J Mol Sci 13:16514–16543

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thijsse G (1964) Fatty-acid accumulation by acrylate inhibition of β-oxidation in an alkane-oxidizing Pseudomonas. Biochim Biophys Acta 84:195–197

    CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Bogaert IN, Groeneboer S, Saerens K, Soetaert W (2011) The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J 278:206–221

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Initiative Program of Korea Research Institute of Bioscience and Biotechnology (KGM4231713) and the Global R&D Project Program of the Ministry of Trade, Industry and Energy of Korea (N0000677).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwoen Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 203 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Sugiharto, Y.E.C., Lee, S. et al. Characterization of the newly isolated ω-oxidizing yeast Candida sorbophila DS02 and its potential applications in long-chain dicarboxylic acid production. Appl Microbiol Biotechnol 101, 6333–6342 (2017). https://doi.org/10.1007/s00253-017-8321-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8321-6

Keywords

Navigation