Skip to main content
Log in

Cisgenesis and intragenesis in microalgae: promising advancements towards sustainable metabolites production

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microalgae are an economically important source of biomolecules and metabolites that can be exploited as feed, nutraceuticals and, potentially, as biofuels, among other biotechnological applications. Microalgae biotechnology involves both culture and metabolic pathways manipulation to obtain high-value products, such as omega-3 fatty acids and carotenoids. However, the introduction of genes and/or foreign regulatory sequences has caused public concern about the effect of genetically modified microalgae to achieve greater secondary metabolite accumulations. To placate these worries, we have focused on two cutting-edge concepts, cisgenesis and intragenesis in order to sustainably produce commercially relevant metabolites. This review provides updated background on current and future uses for microalgae molecular farming. We also discuss the development of genetic tools used in terrestrial plants to obtain genetically modified microalgae free of foreign DNA by means of (i) site-specific mutations, (ii) excision of selectable markers, (iii) zinc-finger nuclease and transcription activator-like effectors, and (iv) CRISPR/Cas9 systems. It is currently important to consider scientific debate not only from a technological standpoint but also in terms of conceptual, socioeconomic, ethical, and legal aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abiri R, Valdiani A, Mahmood SN, Sahebi M, Balia Z, Atabaki N, Talei D (2015) A critical review of the concept of transgenic plants: insights into pharmaceutical biotechnology and molecular farming. Mol Biol 18:21–42

    Google Scholar 

  • Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbiol Cell Fact 11:96. doi:10.1186/1475-2859-11-96

    Article  CAS  Google Scholar 

  • Ahuja MR (2015) Next generation plant biotechnology. In: Ramawat KG, Ahuja MR (eds) Biotechnology and biodiversity. Springer Int Publishing, Switzerland, pp 77–100

    Google Scholar 

  • Akbari F, Morteza E, Ahmad YK (2014) The potential of transgenic green microalgae; a robust photobioreactor to produce recombinant therapeutic proteins. World J Microbiol Biotechnol 30:2783–2796

    Article  CAS  PubMed  Google Scholar 

  • Almaraz-Delgado AL, Flores-Uribe J, Perez-España VH, Salgado-Manjarrez E, Badillo-Corona JA (2014) Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express 4(1):1–9

    Article  CAS  Google Scholar 

  • Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:1–5

    Article  CAS  Google Scholar 

  • Araki M, Kumie N, Ishii T (2014) Caution required for handling genome editing technology. Trends Biotechnol 32:234–237

    Article  CAS  PubMed  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boch J, Bonas U (2010) Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48:419–436

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Burkart MD, Mayfield SP (2013) Biofuels for the twenty-first century editorial overview. Curr Opin Chem Biol 17:436–438

    Article  CAS  PubMed  Google Scholar 

  • Cadoret J, Bardor M, Lerouge P, Cabigliera M, Henríquez V, Carlier A (2008) Les microalgues: usines cellulaires productrices de molecules commerciales recombinantes. Med Sci 24:375–382

    Google Scholar 

  • Cadoret JP, Garnier M, Saint-Jean B (2012) Microalgae, functional genomics and biotechnology. Adv Bot Res 64:285–341

    Article  Google Scholar 

  • Camacho A, Allen V, Chi-Ham C, Bennett A (2014) Genetically engineered crops that fly under the US regulatory radar. Nat Biotechnol 32:1087–1091

    Article  CAS  PubMed  Google Scholar 

  • Campenni L, Nobre BP, Santos CA, Oliveira AC, Aires-Barros MR, Palavra AMF, Gouveia L (2013) Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol 97(3):1383–1393

    Article  CAS  PubMed  Google Scholar 

  • Cardi T (2016) Cisgenesis and genome editing: combining concepts and efforts for a smarter use of genetic resources in crop breeding. Plant Breed. doi:10.1111/pbr.12345

    Google Scholar 

  • Chi XY, Zhang XW, Guan XY, Ding L, Li YX, Wang MQ, Lin HZ, Qin S (2008) Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii. J Microbiol 46:189–201

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Advances 25:294–306

    Article  CAS  Google Scholar 

  • Cong L, Cox F, Lin D, Barretto S, Habib R, Hsu N, Wu P, Jiang X, Marraffini W, Zhang L (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero BF, Obraztsova I, Martín L, Couso I, León R, Vargas MA, Rodríguez H (2010) Isolation and characterization of a lycopene b-cyclase gene from the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J Phycol 46:1229–1238

    Article  CAS  Google Scholar 

  • Cordero BF, Couso I, León R, Rodríguez H, Vargas MA (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl Microbiol Biotechnol 91:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero BF, Couso I, León R, Rodríguez H, Vargas MA (2012) Isolation and characterization of a lycopene e-cyclase gene of Chlorella (Chromochloris) zofingiensis. Regulation of the carotenogenic pathway by nitrogen and light. Mar Drugs 10:2069–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotter J, Zimmermann D, Bekkem H (2015) Application of the EU and Cartagena definitions of a GMO to the classification of plants developed by cisgenesis and gene-editing techniques. Greenpeace Res 1:2–18

    Google Scholar 

  • Cui Y, Qin S, Jiang P (2014) Chloroplast transformation of Platymonas (Tetraselmis) subcordiformis with the bar gene as selectable marker. PLoS One. doi:10.1371/journal.pone.0098607

    Google Scholar 

  • Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553

    Article  CAS  PubMed  Google Scholar 

  • de Lange O, Binder A, Lahaye T (2014) From dead leaf, to new life: TAL effectors as tools for synthetic biology. Plant J 78:753–771

    Article  PubMed  CAS  Google Scholar 

  • Debuchy R, Purton S, Rochaix J-D (1989) The arginosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8(10):2803–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demurtas O, Massa S, Ferrante P, Venuti A, Franconi R, Giovanni G (2013) A Chlamydomonas-derived human Papillomavirus 16E7 vaccine induces specific tumor protection. PLoS One. doi:10.1371/journal.pone.0061473

    PubMed  PubMed Central  Google Scholar 

  • Devos Y, Aguilera J, Liu Y, Paoletti C, Jardin P, Herman L, Perry J, Waigmann E (2014) EFSA’s scientific activities and achievements on the risk assessment of genetically modified organisms (GMOs) during its first decade of existence: looking back and ahead. Transgenic Res 23:1–25

    Article  CAS  PubMed  Google Scholar 

  • Doan T, Yen T, Sivaloganathan B, Obbard J (2011) Screening of marine microalgae for biodiesel feedstock. Biomass and Bioeng 35:2534–2544

    Article  CAS  Google Scholar 

  • Domergue F, Lerchl J, Zahringer U, Heinz E (2003) Cloning and functional characterization of Phaeodactylum tricornutum front–end desaturases involved in eicosapentaenoic acid biosynthesis. Eur J Biochem 269:4105–4113

    Article  CAS  Google Scholar 

  • Dominguez AA, Lim WA, Qi LS (2016) Beyond editing: repurposing CRSPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 17:5–15

    Article  CAS  PubMed  Google Scholar 

  • Doron L, Segal N, Shapira M (2016) Transgene expression in microalgae—from tools to applications. Front Plant Sci 7:505. doi:10.3389/fpls.2016.00505

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinoza C, Schlechter R, Herrera D, Torres E, Serrano A, Medina C, Arce-Johnson P (2013) Cisgenesis and intragenesis: new tools for improving crops. Biol Res 46:323–331

    Article  CAS  PubMed  Google Scholar 

  • Fischer N, Stampacchia O, Redding K, Rochaix J (1996) Selectable marker recycling in the chloroplast. Mol and General Genet 251:373–380

    Article  CAS  Google Scholar 

  • Fletcher S, Muto M, Mayfield S (2007) Optimization of recombinant protein expression in the chloroplasts of green algae. Adv Exper Med Biol 616:90–98

    Article  Google Scholar 

  • Franklin SE, Mayfield SP (2005) Recent developments in the production of human therapeutic proteins in eukaryotic algae. Expert Opin Biol Ther 5:225–235

    Article  CAS  PubMed  Google Scholar 

  • Gaj T, Gersbach C, Barbas C (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Wrigh DA, Li T, Wang Y, Horken K, Weeks DP, Yang B, Spalding MH (2014) TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res 5:52–60

    Article  Google Scholar 

  • Ghosh A, Khanra S, Mondal M, Halder G, Tiwari O, Saini S, Bhowmick T, Gayen K (2016) Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: a review. Ener Convers Manage 113:104–118

    Article  CAS  Google Scholar 

  • Gimpel JA, Hyun JS (2015) Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol and Bioengin 112:339–345

    Article  CAS  Google Scholar 

  • Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opi Chem Biol 17:489–495

    Article  CAS  Google Scholar 

  • Gimpel JA, Henríquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol. doi:10.3389/fmicb.2015.01376

    PubMed  PubMed Central  Google Scholar 

  • Glass D (2015) Pathways to obtain regulatory approvals for the use of genetically modified algae in biofuel or biobased chemical production. Ind Biotechnol 11:71–83

    Article  Google Scholar 

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. SpringerBriefs in Microbiology. doi:10.1007/978-3-642-17997-6_1

    Google Scholar 

  • Gregory J, Topol A, Doerner D, Mayfield S (2013) Alga-produced cholera toxin-pfs25 fusion proteins as oral vaccines. App Enviroment Microbiol 79:3917–3925

    Article  CAS  Google Scholar 

  • Greiner A (2014) CRISPR/Cas9 und zinkfinger-nukleasen für die gezielte genstilllegung in Chlamydomonas reinhardtii. Dissertation, Humboldt University Berlin

  • Grima EM, González MJI, Giménez AG (2013) Solvent extraction for microalgae lipids. Algae for biofuels and energy. Edited by. In: Borowitzka MA, Moheimani NR (eds) New York. Springer, London, pp 187–205

    Google Scholar 

  • Guihéneuf F, Khan A, Tran LP (2016) Genetic engineering: a promising toll to engender physiological, biochemical, and molecular stress resilience in green microalgae. Frontiers Plant Science 7. doi:10.3389/fpls.2016.00400

  • Gupta SM, Grover A, Nasim M (2013) Transgenic technologies in agriculture: from lab to field to market. CIBTech J Biotechnol 3(3):20–47

    Google Scholar 

  • Gutiérrez C, Gimpel J, Escobar C, Marshall S, Henríquez V (2012) Chloroplast genetic tool for the green microalgae Haematococcus pluvialis (Chlorophyceae, Volvocales). J Phycol 48:976–983

    Article  PubMed  CAS  Google Scholar 

  • Halford N (2012) Toward two decades of plant biotechnology: successes, failures, and prospects. Food Ener Security 1:9–28

    Article  Google Scholar 

  • Hamilton ML, Haslam RP, Napier JA, Sayanova O (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab Eng 22:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742–752

    Article  CAS  PubMed  Google Scholar 

  • Haverkort AJ, Boonekamp PM, Hutten R, Jacobsen E, Lotz LAP, Kessel GJT, Vossen JH, Visser RGF (2016) Durable late blight resistance in potato through dynamic varieties obtained by cisgenesis: scientific and societal advances in the DuRPh project. Potato Res 59(1):35–66

    Article  CAS  Google Scholar 

  • Henley W, Litaker R, Novoveská L, Duke C, Quemada H, Sayre R (2013) Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Res 2:66–77

    Article  Google Scholar 

  • Henríquez V, Escobar C, Galarza J, Gimpel J (2016) Carotenoids in microalgae. In: Stange C (ed) Carotenoids in nature, subcellular biochemistry, 79. Springer Int Publishing, Switzerland. doi:10.1007/978-3-319-39126-7_8

  • Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology - from genetics to synthetic biology. Biotechnol Adv 33:1194–1203

    Article  CAS  PubMed  Google Scholar 

  • Holme I, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen C, Vincze E, Holm P (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10:237–247

    Article  CAS  PubMed  Google Scholar 

  • Holme I, Wendt T, Bach P (2013a) Current developments of intragenic and cisgenic crops. J Eastern Christian Studies 57:179–184

    Google Scholar 

  • Holme I, Wendt T, Bach P (2013b) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11:395–407

    Article  CAS  PubMed  Google Scholar 

  • Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  • Huang JC, Chen F, Sandmann G (2006a) Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J Biotechnol 122:176–185

    Article  CAS  PubMed  Google Scholar 

  • Huang JC, Wang Y, Sandmann G, Chen F (2006b) Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 71:473–479

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Liu J, Li Y, Chen F (2008) Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J Phycol 44:684–690

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen E, Schouten H (2007) Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol 25:219–223

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13:1465–1469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J 82:393–412

    Article  CAS  PubMed  Google Scholar 

  • Johanningmeier U, Bodner U, Wildner GF (1987) A new mutation in the gene coding for the herbicide-binding protein in Chlamydomonas. Res Lett 211(2):221–224

    CAS  Google Scholar 

  • Jones C, Mayfield S (2013) Steps toward a globally available malaria vaccine: harnessing the potential of algae for future low cost vaccines. Bioengineered 4:164–167

    Article  PubMed  Google Scholar 

  • Jones C, Luong T, Hannon M (2013) Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. App Microbiol Biotechnol 97:1987–1995

    Article  CAS  Google Scholar 

  • Kajiwara S, Kakizono T, Saito T, Kondo K, Ohtani T, Nishio N, Nagai S, Misawa N (1995) Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli. Plant Mol Biol 29(2):343–352

    Article  CAS  PubMed  Google Scholar 

  • Kanchiswamy CN, Malnoy M, Velasco R, Kim JS, Viola R (2015) Non-GMO genetically edited crop plants. Trends Biotechnol. doi:10.1016/j.tibtech.2015.04.002

    PubMed  Google Scholar 

  • Kasai Y, Oshima K, Ikeda F, Abe J, Yoshimitsu Y, Harayama S (2015) Construction of a self- cloning system in the unicellular green alga Pseudochoricystis ellipsoidea. Biotechnol Biofuels 8:1–12

    Article  CAS  Google Scholar 

  • Kathiresan S, Chandrashekar A, Ravishankar G, Sarada R (2015) Regulation of astaxanthin and its intermediates through cloning and genetic transformation of β-carotene ketolase in Haematococcus pluvialis. J Biotechnol 197:33–41

    Article  CAS  Google Scholar 

  • Kempinski C, Jiang Z, Bell S, Chappell J (2015) Metabolic engineering of higher plants and algae for isoprenoid production. In advances in biochemical engineering/biotechnology. Springer Berlin, Heidelberg, p 161–99

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapidot M (2002) Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 129:7–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • León R, Couso I, Fernández E (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. J Biotechnol 130:143–152

    Article  PubMed  CAS  Google Scholar 

  • León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52

    Article  PubMed  CAS  Google Scholar 

  • Leu S, Boussiba S (2014) Advances in the production of high value products by microalgae. Ind Biotechnol 10:169–183

    Article  CAS  Google Scholar 

  • Li Y, Huang JL, Sandmann G, Chen F (2008) Glucose sensing and the mitochondria alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta 228:735–743

    Article  CAS  PubMed  Google Scholar 

  • Li DW, Cen SY, Liu YK, Balamurugan S, Zheng XY, Alimujiang A, Yang WD, Liu JS, Li HY (2016) A type 2 diacylglycerol acyltransferase accelerates the triacylglycerol biosynthesis in heterokont oleaginous microalga Nannochloropsis oceanica. J Biotechnol 229:65–71

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Gerken H, Huang J, Chen F (2013) Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Proc Biochem 48:788–795

    Article  CAS  Google Scholar 

  • Liu J, Sun Z, Gerken H, Huang J, Jiang Y, Chen F (2014) Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. App Microbiol Biotechnol 98:5069–5079

    Article  CAS  Google Scholar 

  • Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding β-C- 4-oxygenase, that converts β-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364:125–128

    Article  CAS  PubMed  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment new biotechnologies in plant breeding. Nat Biotechnol 30:231–239

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Esvelt K, Church G (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marraffini L, Sontheimer E (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10(1):31–41

    Article  Google Scholar 

  • Mlalazi B, Welsch R, Namanya P, Khanna H, Geijskes R, Harrison M, Harding R, Dale J, Bateson M (2012) Isolation and functional characterisation of banana phytoene synthase genes as potential cisgenes. Plant 236:1585–1598

    Article  CAS  Google Scholar 

  • Molesini B, Pii Y, Pandolfini T (2012) Fruit improvement using intragenesis and artificial microRNA. Trends Biotechnol 30:80–88

    Article  CAS  PubMed  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  • Mussgnug J (2015) Genetic tools and techniques for Chlamydomonas reinhardtii. App Microbiol Biotechnol 99:5407–5418

    Article  CAS  Google Scholar 

  • Napier J, Usher S, Haslam R, Ruiz-Lopez N, Sayanova O (2015) Transgenic plants as a sustainable, terrestrial source of fish oils. J Sci Technol 117:1317–1324

    CAS  Google Scholar 

  • Niu YF, Zhang MH, Li DW, Yang WD, Liu JS, Bai WB, Li HY (2013) Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs 11(11):4558–4569. doi:10.3390/md11114558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Scientific Rep 6. doi:10.1038/srep24951

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Ortiz Rios R (2015) Plant breeding in the Omics Era. In: Ortiz Rios R (ed) Genetic engineering and transgenic breeding. Springer Int Publishing, Switzerland. doi:10.1007/978-3-319-20532-8_7

  • Peng KT, Zheng CN, Xue J, Chen XY, Yang WD, Liu JS, Bai W, Li HY (2014) Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Agric Food Chem 62(35):8773–8776

    Article  CAS  PubMed  Google Scholar 

  • Petrie JR, Liu Q, Mackenzie AM, Shrestha P, Mansour MP, Robert SS, Frampton DF, Blackburn SI, Nichols PD, Singh SP (2010) Isolation and characterisation of a high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production. Mar Biotechnol 12:430–438

    Article  CAS  PubMed  Google Scholar 

  • Przibilla E, Heiss S, Johanningmeier U, Trebst A (1991) Site-specific mutagenesis of the D1 subunit of photosystem II in wild-type Chlamydomonas. Plant Cell 3:169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741

    Article  CAS  PubMed  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Purton S, Szaub J, Wannathong T (2013) Genetic engineering of algal chloroplasts: progress and prospects. J Plant 60:491–499

    CAS  Google Scholar 

  • Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine. Biotechnol Advances 30(6):1602–1613

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson R, Darzins A, Posewitz M (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynthesis Res. doi:10.1007/s11120-014-9994-7

    Google Scholar 

  • Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remacle C, Cardol P, Coosemans N, Gaisne M, Bonnefoy N (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc Natl Acad Sci U S A 103:4771–4776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remade C, Cline S, Boutaffala L, Gabilly S, Larosa V, Barbieri R, Coosemans N, Hamel P (2009) The ARG9 gene encodes the plastid-resident N-acetyl ornithine aminotransferase in the green alga Chlamydomonas reinhardtii. Eukaryotic Cell 8:1460–1463

    Article  CAS  Google Scholar 

  • Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rindi F, Lam D, López-Bautista J (2009) Phylogenetic relationships and species circumscription in Trentepohlia and Printzina (Trentepohliales, Chlorophyta). Mol Phylogen and Evol 52:329–339

    Article  CAS  Google Scholar 

  • Romer P, Recht S, Lahaye T (2009) A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proc Natl Acad Sci U S A 106:20526–20531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rommens C, Haring M, Swords K, Davies H, Belknap W (2007) The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci 12:397–403

    Article  CAS  PubMed  Google Scholar 

  • Sastre RR, Posten C (2010) The variety of microalgae applications as renewable source. Chemie Ingenieur Technik 82:1925–1939

    Article  CAS  Google Scholar 

  • Schaart J, van de Wiel C, Lotz L, Smulders M (2015) Opportunities for products of new plant breeding techniques. Trends Plant Sci. doi:10.1016/j.tplants.2015.11.006

    PubMed  Google Scholar 

  • Schouten HJ, Jacobsen E (2008) Cisgenesis and intragenesis, sisters in innovative plant breeding. Trends Plant Sci 13:260–261

    Article  CAS  PubMed  Google Scholar 

  • Schouten H, Krens J, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7:750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3(1):71–86

    Article  CAS  Google Scholar 

  • Scranton MA, OStrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82:523–531

    Article  CAS  PubMed  Google Scholar 

  • Sharon-Gojman R, Maimon E, Leu S, Zarka A, Boussiba S (2014) Advanced methods for genetic engineering of H. pluvialis. App Microbiol Biotechnol 10:8–15

    Google Scholar 

  • Shew A, Nalley L, Danforth D, Dixon B, Nayga R, Delwaide A, Valent B (2015) Are all GMOs the same? Consumer acceptance of cisgenic rice in India. Plant Biotechnol J 14:4–7

    Article  PubMed  Google Scholar 

  • Shi XM, Chen F, Yuan JP, Chen H (1997) Heterotrophic production of lutein by selected chlorella strains. J Appl Phycol 9:445–450

    Article  CAS  Google Scholar 

  • Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 4:73–95

    Article  CAS  Google Scholar 

  • Singh A, Meenakshi J, Lamalakshmi D (2015) Alternative to transgenesis: cisgenesis and intragenesis. In: Al-Khayri JM (ed) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer Int Publishing, Switzerland, pp 345–367

    Chapter  Google Scholar 

  • Sizova I, Greiner A, Wasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73:873–882

    Article  CAS  PubMed  Google Scholar 

  • Soria-Guerra R, Ramírez-Alonso J, Ibáñez-Salazar A, Govea-Alonso D, Paz-Maldonado L, Bañuelos-Hernández B, Korban S, Rosales-Mendoza S (2014) Expression of an HBcAg-based antigen carrying angiotensin II in Chlamydomonas reinhardtii as a candidate hypertension vaccine. Plant Cell 116:133–139

    CAS  Google Scholar 

  • Specht E, Mayfield S (2014) Algae-based oral recombinant vaccines. Frontiers Microbiol 5:1–7

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 4:87–96

    Article  CAS  Google Scholar 

  • Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125(2):810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbrenner J, Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis: regulation by photosynthetic redox control. Plant Mol Biol 52(2):343–356

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. App Environm Microbiol 72:7477–7484

    Article  CAS  Google Scholar 

  • Sticklen M (2015) Transgenic, cisgenic, intragenic and subgenic crops. Adv Crop Science Technol 3:2–3

    Article  Google Scholar 

  • Sun Z, Liu J, Y B, Zhou Z (2014) Microalgae as the production platform for carotenoids. In: Liu J, Sun Z, Gerken H (eds) Recent advances in microalgal biotechnology. OMICS Group eBooks, Foster City

    Google Scholar 

  • Sundaramurthy VT (2010) The impacts of the transgenes on the modified crops, non-target soil and terrestrial organisms. J Biotechnol 9:9163–9176

    Google Scholar 

  • Tan C, Zhao F, Su Z, Liang C, Qin S (2007) Expression of β-carotene hydroxylase gene (crtR-B) from the green alga Haematococcus pluvialis in chloroplasts of Chlamydomonas reinhardtii. J App Phycol 19:347–355

    Article  CAS  Google Scholar 

  • Tonon T, Sayanova O, Michaelson LV, Qing R, Harvey D, Larson TR, Li Y, Napier JA, Graham IA (2005) Fatty acid desaturases from the microalga Thalassiosira pseudonana. FEBS J 272:3401–3412

    Article  CAS  PubMed  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran M, Ryan H, Siefker D, Van C, Newkirk G, Kim J, Bui J, Mayfield S (2013a) Production of anti-cancer immunotoxins in algae: ribosome inactivating proteins as fusion partners. Biotechnol Bioengin 110:2826–2835

    Article  CAS  Google Scholar 

  • Tran M, Van C, Barrera D, Pär P, Peinado C, Bui J, Mayfield S (2013b) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci U S A 110:15–22

    Article  Google Scholar 

  • Tuteja N, Verma S, Sahoo R, Raveendar S, Reddy B (2012) Recent advances in development of marker-free transgenic plants: regulation and biosafety concern. J Biosci 37:167–197

    Article  CAS  PubMed  Google Scholar 

  • Ulukan H (2011) Plant genetic resources and breeding: current scenario and future prospects. J Agric Biol:447–454

  • USDA Japan Reports (2014) United States Department of Agriculture. Japan takes step forward to improve its GE product review process. Available at: usdajapan.org/en/reports/reports2014.html

  • Vaezi R, Napier JA, Sayanova O (2013) Identification and functional characterization of genes encoding omega-3 polyunsaturated fatty acid biosynthetic activities from unicellular microalgae. Mar Drugs 11(12):5116–5129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanblaere T, Szankowski I, Schaart J, Schouten H, Flachowsky H, Broggini G, Gessler C (2011) The development of a cisgenic apple plant. J Biotechnol 154:304–311

    Article  CAS  PubMed  Google Scholar 

  • Vílchez C, Forján E, Cuaresma M, Bédmar F, Garbayo I, Vega J (2011) Marine carotenoids: biological functions and commercial applications. Mar Drugs 9:319–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voytas D, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12:–e1001877

  • Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M (2010) Identification and characterization of an acyl-CoA: diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri. Plant Physiol Biochem 48:407–416. doi:10.1016/j.plaphy.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  • Walker T, Purton S, Becker D, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24:629–641

    Article  CAS  PubMed  Google Scholar 

  • Wannathong T, Waterhouse J, Young R, Economou C, Purton S (2016) New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. App Microbiol Biotechnol. doi:10.1007/s00253-016-7354-6

    Google Scholar 

  • Weyman PD, Beeri K, Lefebre SC, Rivera J, Mccarthy JK, Heuberger AL, Peers G, Allen AE, Dupont CL (2016) Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis. Plant Biotechnol J 13(4):460–470

    Article  CAS  Google Scholar 

  • Wijffels R, (2015) The need and risks of using transgenic microalgae for the production of food, feed, chemicals and fuels. In: Netherlands OECD (ed) Biosafety and the environmental uses of micro-organisms. Netherlands, p 60–71

  • Willems S, Fraiture M, Deforce D, De Keersmaecker S, De Loose M, Ruttink T, Herman P, Van F, Roosens N (2016) Statistical framework for detection of genetically modified organisms based on next generation sequencing. Food Chem 192:788–798

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Kazachkov M, Jia Y, Zheng Z, Zou J (2013) Expression of a type 2 diacylglycerol acyltransferase from Thalassiosira pseudonana in yeast leads to incorporation of docosahexaenoic acid b-oxidation intermediates into triacylglycerol. FEBS J 280:6162–6172

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Lin F, Li Q, Li T, Zhao J (2015) Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium. Frontiers Microbiol 6:394. doi:10.3389/fmicb.2015.00394

    Google Scholar 

  • Ye ZW, Jiang JG (2010) Analysis of an essential carotenogenic enzyme: ζ-carotene desaturase from unicellular alga Dunaliella salina. J Agri Food Chem 58:11477–11482

    Article  CAS  Google Scholar 

  • Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Phycol 36:379–986

    Article  CAS  Google Scholar 

  • Zheng KJ, Wang CG, Xiao M, Chen J (2014) Expression of bkt and bch genes from Haematococcus pluvialis in transgenic Chlamydomonas. Sci China Life 57:1028–1033

    Article  CAS  Google Scholar 

  • Zhong Y, Huang J, Liu J, Li Y, Jiang Y, Xu Z, Sandmann G, Chen F (2011) Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. J Exper Bot 62:3659–3669

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Pontificia Universidad Católica de Valparaíso (grant no. PIUAS 037293).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalia Henríquez.

Ethics declarations

Conflict of interest

JI Galarza declares that she has no conflict of interest. N Delgado declares that she has no conflict of interest. V Henríquez declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galarza, J.I., Delgado, N. & Henríquez, V. Cisgenesis and intragenesis in microalgae: promising advancements towards sustainable metabolites production. Appl Microbiol Biotechnol 100, 10225–10235 (2016). https://doi.org/10.1007/s00253-016-7948-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7948-z

Keywords

Navigation