Skip to main content

Advertisement

Log in

Applying pathway engineering to enhance production of alpha-ketoglutarate in Yarrowia lipolytica

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

α-Ketoglutarate (α-KG), one of short-chain carboxylates of high commercial relevance, has been widely used in food, medicine, chemical, and cosmetic fields. Compared to other carboxylates, α-KG occupies key positions in the tricarboxylate cycle (TCA cycle) and amino acid metabolic pathway, the over-accumulation of α-KG is restricted both by tighter carbon and nitrogen regulation process. Biotechnology production of α-KG on large industrial level has been impeded by many obstacles. This review aims at highlighting and stating recent efforts toward improving the yield and titer of α-KG in the strains of Yarrowia lipolytica to reach industrial relevance. Fermentation process optimization concerning feedstock utilization, dissolved oxygen controlling, pH manipulation and establishment of fed-batch process, have been assessed and evaluated. Moreover, pathway engineering routes have been applied for enhancing carbon commitment to α-KG, blocking competing pathways, regenerating of co-factors and regulating of carboxylate transporters to facilitate production and accumulation of α-KG. Although no engineered strain can satisfy the requirements of industrial production relevance to date, these strategies provide many clues for accelerating strain development for α-KG production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alonso S, Rendueles M, Diaz M (2015) Microbial production of specialty organic acids from renewable and waste materials. Crit Rev Biotechnol 35(4):497–513. doi:10.3109/07388551.2014.904269

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan A, Nemeria NS, Chakraborty S, Kakalis L, Jordan F (2012) Determination of pre-steady-state rate constants on the Escherichia coli pyruvate dehydrogenase complex reveals that loop movement controls the rate-limiting step. J Am Chem Soc 134(45):18644–18655. doi:10.1021/ja3062375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bankar A, Kumar A, Zinjarde S (2009) Environmental and industrial applications of Yarrowia lipolytica. Appl Microbiol Biotechnol 84(5):847–865. doi:10.1007/s00253-009-2156-8

    Article  CAS  PubMed  Google Scholar 

  • Blanchin-Roland S (2011) Identical domains of Yarrowia lipolytica Vps23 are required for both ESCRT and Rim pathways, but the latter needs an interaction between the Vps23 UEV domain and Rim8/PalF. FEMS Yeast Res 11(6):473–486. doi:10.1111/j.1567-1364.2011.00735.x

    Article  CAS  PubMed  Google Scholar 

  • Boonburapong B, Laloknam S, Incharoensakdi A (2015) Accumulation of gamma-aminobutyric acid in the halotolerant cyanobacterium Aphanothece halophytica under salt and acid stress. J Appl Phycol 28(1):141–148. doi:10.1007/s10811-015-0523-7

    Article  CAS  Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539. doi:10.1039/b922014c

    Article  CAS  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61. doi:10.1038/nrm2820

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Ryu DD, Park CS, Kim JY (1998) Improvement of heterologous protein productivity using recombinant Yarrowia lipolytica and cyclic fed-batch process strategy. Biotechnol Bioeng 59(3):379–385. doi:10.1002/(sici)1097-0290(19980805)59:3<379::aid-bit15>3.0.co;2-9

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Nielsen J (2016) Biobased organic acids production by metabolically engineered microorganisms. Curr Opin Biotechnol 37:165–172. doi:10.1016/j.copbio.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  • Chernyavskaya OG, Shishkanova NV, Finogenova TV (1997) Biosynthesis of α-ketoglutaric acid from ethanol by yeasts. Appl Biochem Microbiol 33(3):261–265

    Google Scholar 

  • Chernyavskaya OG, Shishkanova NV, Il'chenko AP, Finogenova TV (2000) Synthesis of α-ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol. Appl Microbiol Biotechnol 53(2):152–158. doi:10.1007/s002530050002

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  • Dulermo R, Gamboa-Meléndez H, Michely S, Thevenieau F, Neuvéglise C, Nicaud J-M (2015) The evolution of Jen3 proteins and their role in dicarboxylic acid transport in Yarrowia. Microbiology Open 4(1):100–120. doi:10.1002/mbo3.225

    Article  CAS  PubMed  Google Scholar 

  • Fendt S-M, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, Vokes NI, Guarente L, Heiden MGV, Stephanopoulos G (2013) Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat Commun 4:2236. doi:10.1038/ncomms3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fickers P, Benetti PH, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud JM (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5(6–7):527–543. doi:10.1016/j.femsyr.2004.09.004

    Article  CAS  PubMed  Google Scholar 

  • Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG (2005) Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Appl Biochem Microbiol 41(5):418–425

    Article  CAS  Google Scholar 

  • Föerster A, Aurich A, Mauersberger S, Barth G (2007) Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 75(6):1409–1417. doi:10.1007/s00253-007-0958-0

    Article  CAS  Google Scholar 

  • Guo H, Madzak C, Du G, Zhou J, Chen J (2014) Effects of pyruvate dehydrogenase subunits overexpression on the α-ketoglutarate production in Yarrowia lipolytica WSH-Z06. Appl Microbiol Biotechnol 98(16):7003–7012. doi:10.1007/s00253-014-5745-0

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Liu P, Madzak C, Du G, Zhou J, Chen J (2015a) Identification and application of keto acids transporters in Yarrowia lipolytica. Sci Rep 5:8138–8147. doi:10.1038/srep08138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ZP, Duquesne S, Bozonnet S, Cioci G, Nicaud JM, Marty A, O'Donohue MJ (2015b) Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes. Biotechnol Biofuels 8:16. doi:10.1186/s13068-015-0289-9

    Article  CAS  Google Scholar 

  • Guo H, Madzak C, Du G, Zhou J (2016) Mutagenesis of conserved active site residues of dihydrolipoamide succinyltransferase enhances the accumulation of α-ketoglutarate in Yarrowia lipolytica. Appl Microbiol Biotechnol 100(2):649–659. doi:10.1007/s00253-015-6995-1

    Article  CAS  PubMed  Google Scholar 

  • Hatti-Kaul R, Tornvall U, Gustafsson L, Borjesson P (2007) Industrial biotechnology for the production of bio-based chemicals - a cradle-to-grave perspective. Trends Biotechnol 25(3):119–124. doi:10.1016/j.tibtech.2007.01.001

    Article  CAS  PubMed  Google Scholar 

  • Holladay J, Bozell J, White J, Johnson D (2007) Top value-added chemicals from biomass. Volume II–Results of Screening for Potential Candidates from Biorefinery Lignin, Report prepared by members of NREL, PNNL and University of Tennessee

  • Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Potter M, Marx A, Barth G (2011) Overexpression of α-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol 89(5):1519–1526. doi:10.1007/s00253-010-2957-9

    Article  CAS  PubMed  Google Scholar 

  • Hossain GS, Li J, H-d S, Chen RR, Du G, Liu L, Chen J (2014) Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing l-amino acid deaminase from Proteus mirabilis. J Biotechnol 169:112–120. doi:10.1016/j.jbiotec.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  • Hua Q, Yang C, Shimizu K (1999) Metabolic flux analysis for efficient pyruvate fermentation using vitamin-auxotrophic yeast of Torulopsis glabrata. J Biosci Bioeng 87(2):206–213. doi:10.1016/s1389-1723(99)89014-8

    Article  CAS  PubMed  Google Scholar 

  • Huo Y-X, Cho KM, Rivera JGL, Monte E, Shen CR, Yan Y, Liao JC (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29(4):346–U160. doi:10.1038/nbt.1789

    Article  CAS  PubMed  Google Scholar 

  • Jo JH, Seol HY, Lee YB, Kim MH, Hyun HH, Lee HH (2012) Disruption of genes for the enhanced biosynthesis of α-ketoglutarate in Corynebacterium glutamicum. Can J Microbiol 58(3):278–286. doi:10.1139/w11-132

    Article  CAS  PubMed  Google Scholar 

  • Kallio P, Pásztor A, Thiel K, Akhtar MK, Jones PR (2014) An engineered pathway for the biosynthesis of renewable propane. Nat Commun:5. doi:10.1038/ncomms5731

  • Kamzolova SV, Morgunov IG (2013) α-Ketoglutaric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 97(12):5517–5525. doi:10.1007/s00253-013-4772-6

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Finogenova TV, Lunina YN, Perevoznikova OA, Minachova LN, Morgunov IG (2007) Characteristics of the growth on rapeseed oil and synthesis of citric and isocitric acids by Yarrowia lipolytica yeasts. Microbiology 76(1):20–24. doi:10.1134/S0026261707010031

    Article  CAS  Google Scholar 

  • Kamzolova S, Chiglintseva M, Lunina J, Morgunov I (2012a) α-Ketoglutaric acid production by Yarrowia lipolytica and its regulation. Appl Microbiol Biotechnol 96(3):783–791. doi:10.1007/s00253-012-4222-x

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Chiglintseva MN, Yusupova AI, Vinokurova NG, Lysanskaya VY, Morgunov IG (2012b) Biotechnological potential of Yarrowia lipolytica grown under thiamine limitation. Food Technol Biotechnol 50(4):412–419

    CAS  Google Scholar 

  • Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Micro 9(5):330–343. doi:10.1038/nrmicro2549

    Article  CAS  Google Scholar 

  • Kruse K, Förster A, Mauersberger S, Barth G (2004) Method for the biotechnological production of citric acid by means of a genetically modified yeast Yarrowia lipolytica

  • Lane S, Zhang SY, Wei N, Rao C, Jin YS (2015) Development and physiological characterization of cellobiose-consuming Yarrowia lipolytica. Biotechnol Bioeng 112(5):1012–1022. doi:10.1002/bit.25499

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Li Y, Zhu Y, Du G, Chen J (2007) Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab Eng 9(1):21–29. doi:10.1016/j.ymben.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  • Lodi T, Diffels J, Goffeau A, Baret PV (2007) Evolution of the carboxylate Jen transporters in fungi. FEMS Yeast Res 7(5):646–656. doi:10.1111/j.1567-1364.2007.00245.x

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi:10.1128/mmbr.66.3.506-577.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgunov IG, Solodovnikova NY, Sharyshev AA, Kamzolova SV, Finogenova TV (2004) Regulation of NAD+-dependent isocitrate dehydrogenase in the citrate producing yeast Yarrowia lipolytica. Biochemistry-Moscow 69(12):1391–1398. doi:10.1007/s10541-005-0086-3

    Article  CAS  PubMed  Google Scholar 

  • Morgunov IG, Kamzolova SV, Samoilenko VA (2013) Enhanced α-ketoglutaric acid production and recovery in Yarrowia lipolytica yeast by effective pH controlling. Appl Microbiol Biotechnol 97(19):8711–8718. doi:10.1007/s00253-013-5170-9

    Article  CAS  PubMed  Google Scholar 

  • Orij R, Brul S, Smits GJ (2011) Intracellular pH is a tightly controlled signal in yeast. BBA-Gen Subjects 1810(10):933–944. doi:10.1016/j.bbagen.2011.03.011

    Article  CAS  Google Scholar 

  • Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92(4):689–695. doi:10.1007/s00253-011-3597-4

    Article  CAS  PubMed  Google Scholar 

  • Otto C, Yovkova V, Aurich A, Mauersberger S, Barth G (2012) Variation of the by-product spectrum during α-ketoglutaric acid production from raw glycerol by overexpression of fumarase and pyruvate carboxylase genes in Yarrowia lipolytica. Appl Microbiol Biotechnol 95(4):905–917. doi:10.1007/s00253-012-4085-1

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82(1):43–49

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92(4):737–744

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Muniglia L, Chevalot I, Aggelis G, Marc I (2003) Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr Microbiol 46(2):124–130. doi:10.1007/s00284-002-3833-3

    Article  CAS  PubMed  Google Scholar 

  • Pastor MM, Proft M, Pascual-Ahuir A (2009) Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast. J Biol Chem 284(44):30307–30317. doi:10.1074/jbc.M109.050682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rui B, Shen T, Zhou H, Liu J, Chen J, Pan X, Liu H, Wu J, Zheng H, Shi Y (2010) A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. BMC Syst Biol 4:122. doi:10.1186/1752-0509-4-122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu S, Labbe N, Trinh CT (2015) Simultaneous saccharification and fermentation of cellulose in ionic liquid for efficient production of α-ketoglutaric acid by Yarrowia lipolytica. Appl Microbiol Biotechnol 99(10):4237–4244. doi:10.1007/s00253-015-6521-5

    Article  CAS  PubMed  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26(2):100–108. doi:10.1016/j.tibtech.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  • Skory CD, Hector RE, Gorsich SW, Rich JO (2010) Analysis of a functional lactate permease in the fungus Rhizopus. Enzym Microb Technol 46(1):43–50. doi:10.1016/j.enzmictec.2009.08.014

    Article  CAS  Google Scholar 

  • Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D (2005) White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. J Ind Microbiol Biotechnol 32(11−/12):651–664. doi:10.1007/s10295-005-0254-x

    Article  CAS  PubMed  Google Scholar 

  • Tsugawa R, Nakase T, Kobayash T, Yamashit K, Okumura S (1969) Fermentation of n-paraffins by yeasts. I. Fermentative production of a-ketoglutaric acid by Candida lipolytica. Appl Biochem Microbiol 33(2):158

    CAS  Google Scholar 

  • Verseck S, Karau A, Weber M (2009) Fermentative production of alpha-ketoglutaric acid. Evonik Degussa GmbH Patent WO2009053489

  • Wang W, Wei H, Alahuhta M, Chen XW, Hyman D, Johnson DK, Zhang M, Himmel ME (2014) Heterologous expression of xylanase enzymes in lipogenic yeast Yarrowia lipolytica. PLoS One 9(12). doi:10.1371/journal.pone.0111443

  • Wei H, Wang W, Alahuhta M, Wall TV, Baker JO, Taylor LE, Decker SR, Himmel ME, Zhang M (2014) Engineering towards a complete heterologous cellulase secretome in Yarrowia lipolytica reveals its potential for consolidated bioprocessing. Biotechnol Biofuels:7. doi:10.1186/s13068-014-0148-0

  • Weissbrodt E, Gey M, Barth G, Weber H, Stottmeister U, Düresch R, Richter H (1989) Verfahren zur Herstellung von 2-Oxoglutarsäure durch Hefen. Patent DD 267999

  • Wu N, Yang M, Gaur U, Xu H, Yao Y, Li D (2016) α-Ketoglutarate: physiological functions and applications. Biomol Ther 24(1):1–8. doi:10.4062/biomolther.2015.078

    Article  Google Scholar 

  • Yin XX, Madzak C, Du GC, Zhou JW, Chen J (2012) Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl Microbiol Biotechnol 96(6):1527–1537. doi:10.1007/s00253-012-4192-z

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Li JH, Shin HD, Du GC, Liu L, Chen J (2015) Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnol Adv 33(6):830–841. doi:10.1016/j.biotechadv.2015.04.006

    Article  CAS  PubMed  Google Scholar 

  • Yovkova V, Otto C, Aurich A, Mauersberger S, Barth G (2014) Engineering the α-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP+-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica. Appl Microbiol Biotechnol 98(5):2003–2013. doi:10.1007/s00253-013-5369-9

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Cao YJ, Zou HB, Xian M (2011) Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols. Appl Microbiol Biotechnol 89(3):573–583. doi:10.1007/s00253-010-2970-z

    Article  CAS  PubMed  Google Scholar 

  • Yu ZZ, Du GC, Zhou JW, Chen J (2012) Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by an improved integrated fed-batch strategy. Bioresour Technol 114:597–602. doi:10.1016/j.biortech.2012.03.021

    Article  CAS  PubMed  Google Scholar 

  • Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107(4):673–682. doi:10.1002/bit.22859

    Article  CAS  PubMed  Google Scholar 

  • Zhou JW, Yin XX, Madzak C, Du GC, Chen J (2012) Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism. J Biotechnol 161(3):257–264. doi:10.1016/j.jbiotec.2012.05.025

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Guo or Hongwen Chen.

Ethics declarations

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers: 31130043, 21276109, 21576108, 21476093), the Author of National Excellent Doctoral Dissertation of PR China (grant number: FANEDD, 201256), the Program for New Century Excellent Talents in University (grant number: NCET-12-0876), the Fundamental Research Funds for the Central Universities (grant number: JUSRP51307A), the 111 Project (grant number: 111-2-06), and the Scientific Research Funds of Huaqiao University (16BS103).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Su, S., Madzak, C. et al. Applying pathway engineering to enhance production of alpha-ketoglutarate in Yarrowia lipolytica . Appl Microbiol Biotechnol 100, 9875–9884 (2016). https://doi.org/10.1007/s00253-016-7913-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7913-x

Keywords

Navigation