Skip to main content

Advertisement

Log in

Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Synthesis of silver nanoparticles by plants and plant extracts (green synthesis) has been developed into an important innovative biotechnology, especially in the application of such particles in the control of pathogenic bacteria. This is a safer technology, biologically and environmentally, than synthesis of silver nanoparticles by chemical or physical methods. Plants are preferable to microbes as agents for the synthesis of silver nanoparticles because plants do not need to be maintained in cell culture. The antibacterial activity of bionanoparticles has been extensively explored during the past decade. This review examines studies published in the last decade that deal with the synthesis of silver nanoparticles in plants and their antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc doi:http://dx.doi.org/10.1016/j.jscs.2013.09.011

  • Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011:8. doi:10.4061/2011/454090

  • Ajitha B, Ashok Kumar Reddy Y, Reddy PS (2013) Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim Acta A 121C:164–172. doi:10.1016/j.saa.2013.10.077

  • Amin M, Anwar F, Janjua MR, Iqbal MA, Rashid U (2012) Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. Berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int J Mol Sci 13(8):9923–9941. doi:10.3390/ijms13089923

  • Antony JJ, Nivedheetha M, Siva D, Pradeepha G, Kokilavani P, Kalaiselvi S, Sankarganesh A, Balasundaram A, Masilamani V, Achiraman S (2013) Antimicrobial activity of Leucas aspera engineered silver nanoparticles against Aeromonas hydrophila in infected Catla catla. Colloids Surf B 109:20–24. doi:10.1016/j.colsurfb.2013.03.020

  • Antonya JJ, Sivalingamb P, Sivaa D, Kamalakkannana S, Anbarasub K, Sukirthaa R, Krishnana M, Achiramana S (2011) Comparative evaluation of antibacterial activity of silver nanoparticles synthesized using Rhizophora apiculata and glucose. Colloids Surf B 88:134–140

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46(2):446–475

    Article  CAS  PubMed  Google Scholar 

  • Bankar A, Joshi B, Kumar AR, Zinjarde S (2010a) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A 368(1–3):58–63. doi:10.1016/j.colsurfa.2010.07.024

    Article  CAS  Google Scholar 

  • Bankar A, Joshi B, Kumar AR, Zinjarde S (2010b) Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B 80(1):45–50. doi:10.1016/j.colsurfb.2010.05.029

    Article  CAS  Google Scholar 

  • Bindhu MR, Umadevi M (2013) Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta A 101:184–190. doi:10.1016/j.saa.2012.09.031

  • Borah D, Deka P, Bhattacharjee P, Changmai A, Yadav RNS (2013) Ocimum sanctum mediated silver nanoparticles showed better antimicrobial activities compared to citrate stabilized silver nanoparticles against multidrug resistant bacteria. J Pharm Res 7(6):478–482. doi:10.1016/j.jopr.2013.06.018

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22(2):577–583. doi:10.1021/bp0501423

  • Chaudhari PR, Masurkar SA, Shidore VB, Kamble SP (2012) Biosynthesis of silver nanoparticles using Saccharum officinarum and its antimicrobial activity. Micro & Nano Letters 7(7):646–650

  • Conrad AH, Tramp CR, Long CJ, Wells DC, Paulsen AQ, Conrad GW (1999) Ag+ alters cell growth, neurite extension, cardiomyocyte beating, and fertilized egg constriction. Aviat, Space Environ Med 70(11):1096–1105

  • Daniel S, Nehru K, Sivakumar M (2012) Rapid biosynthesis of silver nanoparticles using Eichornia crassipes and its antibacterial activity. Curr Nanosci 8(1):125–129

  • Das J, Paul Das M, Velusamy P (2013a) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim Acta A 104:265–270. doi:10.1016/j.saa.2012.11.075

  • Das J, Velusamy P (2013) Antibacterial effects of biosynthesized silver nanoparticles using aqueous leaf extract of Rosmarinus officinalis L. Mater Res Bull 48:4531–4537

  • Das S, Das J, Samadder A, Bhattacharyya SS, Das D, Khuda-Bukhsh AR (2013b) Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surf B 103:325–336

  • Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B 98:112–119. doi:10.1016/j.colsurfb.2012.04.006

  • Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev doi:. doi:10.1039/c4cs00363b

    Google Scholar 

  • Ferrazzano GF, Amato I, Ingenito A, Zarrelli A, Pinto G, Pollio A (2011) Plant polyphenols and their anti-cariogenic properties: a review. Molecules 16(2):1486–1507

    Article  CAS  PubMed  Google Scholar 

  • Gade A, Gaikwad S, Tiwari V, Yadav A, Ingle A, Rai M (2010) Biofabrication of silver nanoparticles by Opuntia ficus-indica: In vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr Nanosci 6(4):370–375. doi:10.2174/157341310791659026

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361. doi:10.1021/la020835i

    Article  CAS  Google Scholar 

  • Ghaffari-Moghaddam M, Hadi-Dabanlou R (2014) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J Ind Eng Chem 20(2):739–744. doi:10.1016/j.jiec.2013.09.005

  • Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomed 7:483–496. doi:10.2147/IJN.S24793

  • Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Vijayakumar V, Selvam S, Dhineshkumar M, Kumaraguru AK (2011) Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property. APJTM 4(10):799–803. doi:10.1016/S1995-7645(11)60197-1

    CAS  PubMed  Google Scholar 

  • Gopinath V, MubarakAli D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B 96:69–74. doi:10.1016/j.colsurfb.2012.03.023

  • He Y, Du Z, Lv H, Jia Q, Tang Z, Zheng X, Zhang K, Zhao F (2013) Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. Int J Nanomedicine 8:1809–1815. doi:10.2147/ijn.s43289

  • Holt KB, Bard AJ (2005) Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44(39):13214–13223. doi:10.1021/bi0508542

  • Huang J, Zhan G, Zheng B, Sun D, Lu F, Lin Y, Chen H, Zheng Z, Zheng Y, Li Q (2011) Biogenic silver nanoparticles by Cacumen platycladi extract: synthesis, formation mechanism, and antibacterial activity. Ind Eng Chem Res 50(15):9095–9106. doi:10.1021/ie200858y

  • Im AR, Han L, Kim ER, Kim J, Kim YS, Park Y (2012) Enhanced antibacterial activities of Leonuri herba extracts containing silver nanoparticles. Phytother Res: PTR 26(8):1249–1255. doi:10.1002/ptr.3683

  • Iravani HK, Mirmohammadi S, Zolfaghari BS (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Res Int 2013

  • Jagajjanani Rao K, Paria S (2013) Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Mater Res Bull 48(2):628–634. doi:10.1016/j.materresbull.2012.11.035

  • Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. Seed Extract and its antibacterial activity. Ind Crop Prod 46:132–137

  • Karn B (2008) The road to green nanotechnology. J Ind Ecol 12(3):263–266. doi:10.1111/j.1530-9290.2008.00045.x

    Article  Google Scholar 

  • Kasture M, Patel P, Prabhune A, Ramana C, Kulkarni A, Prasad B (2008) Synthesis of silver nanoparticles by sophorolipids: effect of temperature and sophorolipid structure on the size of particles. J Chem Sci (Bangalore, India) 120(6):515–520

    Article  CAS  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B (2011a) Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with d-sorbitol: study of antibacterial activity. J Nanotechnol: 5. doi:10.1155/2011/152970

  • Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011b) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A 79(3):594–598. doi:10.1016/j.saa.2011.03.040

  • Kharissova OV, Dias HVR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248. doi:10.1016/j.tibtech.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist C-G (1999) Silver-based crystalline nanoparticles, microbially fabricated. PNAS 96(24):13611–13614

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konwarh R, Gogoi B, Philip R, Laskar M, Karak N (2011) Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueous extract of Citrus sinensis peel. Colloids Surf B 84(2):338–345

  • Kora AJ, Sashidhar RB, Arunachalam J (2012) Aqueous extract of gum olibanum (Boswellia serrata): A reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem 47(10):1516–1520. doi:10.1016/j.procbio.2012.06.004

  • Kotakadi VS, Rao YS, Gaddam SA, Prasad TN, Reddy AV, Gopal DV (2013) Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its antimicrobial activity. Colloids Surf B 105:194–198. doi:10.1016/j.colsurfb.2013.01.003

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76(1):50–56. doi:10.1016/j.colsurfb.2009.10.008

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A 93:95–99. doi:10.1016/j.saa.2012.03.002

    Article  CAS  Google Scholar 

  • Kumar KM, Sinha M, Mandal BK, Ghosh AR, Siva Kumar K, Sreedhara Reddy P (2012a) Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim Acta A 91:228–233. doi:10.1016/j.saa.2012.02.001

  • Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012b) Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles. Spectrochim Acta A 90:173–176. doi:10.1016/j.saa.2012.01.029

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84(2):151–157. doi:10.1002/jctb.2023

    Article  CAS  Google Scholar 

  • Lansdown AB (2006) Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33:17–34. doi:10.1159/000093928

    Article  CAS  PubMed  Google Scholar 

  • Lin IW-S, Lok C-N, Che C-M (2014) Biosynthesis of silver nanoparticles from silver(i) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chem Sci 5(8):3144–3150. doi:10.1039/C4SC00138A

  • Logeswari P, Silambarasan S, Abraham J (2012) Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. J Saudi Chem Soc. doi:10.1016/j.jscs.2012.04.007

    Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356. doi:10.1016/j.Biotech Adv.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • MubarakAli D, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B 85(2):360–365. doi:10.1016/j.colsurfb.2011.03.009

    Article  CAS  Google Scholar 

  • Mude N, Ingle A, Gade A, Rai M (2009) Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J Plant Biochem Biotechnol 18(1):83–86. doi:10.1007/BF03263300

  • Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010) Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf B 79(2):488–493. doi:10.1016/j.colsurfb.2010.05.018

  • Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44(7):469–478. doi:10.1021/ar1001457

    Article  CAS  PubMed  Google Scholar 

  • Nadhman A, Nazir S, Khan MI, Arooj S, Bakhtiar M, Shahnaz G, Yasinzai M (2014) PEGylated silver doped zinc oxide nanoparticles as novel photosensitizers for photodynamic therapy against Leishmania. Free Radic Biol Med 77:230–238

  • Nagajyothi PC, Lee KD (2011) Synthesis of plant-mediated silver nanoparticles using Dioscorea batatas rhizome extract and evaluation of their antimicrobial activities. J Nanomater. doi:10.1155/2011/573429

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298

  • Niraimathi K, Sudha V, Lavanya R, Brindha P (2013) Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf, B 102:288–291

  • Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M (2013) Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health 10(10):5221–5238. doi:10.3390/ijerph10105221

    Article  PubMed Central  PubMed  Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5(3):69–78. doi:10.1049/iet-nbt.2010.0033

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Noh HJ, Han L, Kim H-S, Kim Y-J, Choi JS, Kim C-K, Kim YS, Cho S (2012) Artemisia capillaris extracts as a green factory for the synthesis of silver nanoparticles with antibacterial activities. J Nanosci Nanotechnol 12(9):7087–7095

  • Pasupuleti VR, Prasad SRA, Balam SK, Narasimhulu G, Reddy CS, Ab Rahman I, Gan SH (2013) Biogenic silver nanoparticles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies. Int J Nanomedicine 8:3355–3364. doi:10.2147/ijn.s49000

  • Patil RS, Kokate MR, Kolekar SS (2012) Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim Acta A 91:234–238. doi:10.1016/j.saa.2012.02.009

  • Prabakar K, Sivalingam P, Mohamed Rabeek SI, Muthuselvam M, Devarajan N, Arjunan A, Karthick R, Suresh MM, Wembonyama JP (2013) Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukia scabrella (Musumusukkai) against drug resistance nosocomial Gram negative bacterial pathogens. Colloids Surf B 104:282–288. doi:10.1016/j.colsurfb.2012.11.041

  • Prabhu N, Raj DT, Yamuna GK, Siddiqua SA, Innocent JP (2010) Synthesis of silver phyto nanoparticles and their antibacterial efficacy. Dig J Nanomater Bios 5(1):185–189

    Google Scholar 

  • Prakash P, Gnanaprakasam P, Emmanuel R, Arokiyaraj S, Saravanan M (2013) Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi. Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf B 108:255–259. doi:10.1016/j.colsurfb.2013.03.017

  • Prasad T, Elumalai E, Khateeja S (2011) Evaluation of the antimicrobial efficacy of phytogenic silver nanoparticles. Asian Pac J Trop Biomed 582–585

  • Prasad T, Elumalai EK (2011) Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac J Trop Biomed 1(6):439–442. doi:10.1016/S2221-1691(11)60096-8

  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Kinetic evolution studies of silver nanoparticles in a bio-based green synthesis process. Colloids Surf A 377(1–3):212–216. doi:10.1016/j.colsurfa.2010.12.047

    Article  CAS  Google Scholar 

  • Priya MM, Selvi BK, Paul JJ (2011) Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Dig J Nanomater Bios 6(2):869–877

  • Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed 50(3):586–621

    Article  CAS  Google Scholar 

  • Raja K, Saravanakumar A, Vijayakumar R (2012) Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim Acta A 97:490–494

  • Ramamurthy CH, Padma M, Mariya Samadanam ID, Mareeswaran R, Suyavaran A, Kumar MS, Premkumar K, Thirunavukkarasu C (2013) The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf B 102:808–815. doi:10.1016/j.colsurfb.2012.09.025

    Article  CAS  Google Scholar 

  • Ramteke C, Chakrabarti T, Sarangi BK, Pandey R-A (2013) Synthesis of silver nanoparticles from the aqueous extract of leaves of Ocimum sanctum for enhanced antibacterial activity. J Chem 2013:7. doi:10.1155/2013/278925

  • Rauwel P, Küünal S, Ferdov S, Rauwel E (2014) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng

  • Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128(3):613–622. doi:10.1016/j.actatropica.2013.09.007

  • Reddy NJ, Nagoor Vali D, Rani M, Rani SS (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater Sci Eng C 34:115–122. doi:10.1016/j.msec.2013.08.039

  • Sahu N, Soni D, Chandrashekhar B, Sarangi B, Satpute D, Pandey R (2013) Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity. Bioprocess Biosyst Eng 36(7):999–1004. doi:10.1007/s00449-012-0841-y

  • Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloids Surf B 108:80–84. doi:10.1016/j.colsurfb.2013.02.033

  • Sathishkumar G, Gobinath C, Karpagam K, Hemamalini V, Premkumar K, Sivaramakrishnan S (2012) Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf B 95:235–240. doi:10.1016/j.colsurfb.2012.03.001

  • Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B 73(2):332–338. doi:10.1016/j.colsurfb.2009.06.005

  • Savithramma N, Linga Rao M, Suvarnalatha Devi P (2011) Evaluation of antibacterial efficacy of biologically synthesized silver nanoparticles using stem barks of Boswellia ovalifoliolata Bal. and henry and Shorea tumbuggaia roxb. J Biol Sci 11(1):39

  • Saxena A, Tripathi RM, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater Lett 67(1):91–94. doi:10.1016/j.matlet.2011.09.038

  • Saxena A, Tripathi R, Singh R (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Bios 5(2):427–432

  • Seralathan J, Stevenson P, Subramaniam S, Raghavan R, Pemaiah B, Sivasubramanian A, Veerappan A (2014) Spectroscopy investigation on chemo-catalytic, free radical scavenging and bactericidal properties of biogenic silver nanoparticles synthesized using Salicornia brachiata aqueous extract. Spectrochim Acta A 118:349–355

  • Shalaka AM, Pratik RC, Vrishali BS, Suresh PK (2011) Rapid biosynthesis of silver nanoparticles using Cymbopogan citratus (lemongrass) and its antimicrobial activity. Nano-Micro Lett 3(3):189–194. doi:10.5101/nml.v3i3.p189-194

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

  • Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7(5):267–278

    Article  CAS  Google Scholar 

  • Singh A, Jain D, Upadhyay M, Khandelwal N, Verma H (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios 5(2):483–489

  • Singhal G, Bhavesh R, Kasariya K, Sharma A, Singh R (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (tulsi) leaf extract and screening its antimicrobial activity. J Nanoparticle Res 13(7):2981–2988. doi:10.1007/s11051-010-0193-y

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32(1):79–84

    Article  PubMed  Google Scholar 

  • Sukirtha R, Priyanka KM, Antony JJ, Kamalakkannan S, Thangam R, Gunasekaran P, Krishnan M, Achiraman S (2012) Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 47(2):273–279. doi:10.1016/j.procbio.2011.11.003

  • Sulaiman GM, Mohammad AAW, Abdul-Wahed HE, Ismail MM (2013a) Biosynthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Rosmarinus officinalis extract. Dig J Nanomater Bios 8(1):273–280

  • Sulaiman GM, Mohammed WH, Marzoog TR, Al-Amiery AAA, Kadhum AAH, Mohamad AB (2013b) Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac J Trop Biomed 3(1):58–63. doi:10.1016/S2221-1691(13)60024-6

  • Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53(46):12320–12364. doi:10.1002/anie.201403036

    CAS  Google Scholar 

  • Tao A, Sinsermsuksakul P, Yang P (2006) Polyhedral silver nanocrystals with distinct scattering signatures. Angew Chem Int Ed 45(28):4597–4601

    Article  CAS  Google Scholar 

  • Thirumurgan A, Tomy NA, Jai Ganesh R, Gobikrishnan S (2010) Biological reduction of silver nanoparticles using plant leaf extracts and its effect an increased antimicrobial activity against clinically isolated organism. De Phar Chem 2:279–284

    Google Scholar 

  • Tran TTT, Vu TTH, Nguyen TH (2013) Biosynthesis of silver nanoparticles using Tithonia diversifolia leaf extract and their antimicrobial activity. Mater Lett 105:220–223. doi:10.1016/j.matlet.2013.04.021

  • Umashankari J, Inbakandan D, Ajithkumar TT, Balasubramanian T (2012) Mangrove plant, Rhizophora mucronata (lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat Biosyst 8(1):11. doi:10.1186/2046-9063-8-11

  • Vanaja M, Annadurai G (2013) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3(3):217–223. doi:10.1007/s13204-012-0121-9

  • Veerasamy R, Xin TZ, Gunasagaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15(2):113–120. doi:10.1016/j.jscs.2010.06.004

    Article  CAS  Google Scholar 

  • Velmurugan P, Lee SM, Iydroose M, Lee KJ, Oh BT (2013) Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl Microbiol Biotechnol 97(1):361–368. doi:10.1007/s00253-012-3892-8

    Article  CAS  PubMed  Google Scholar 

  • Vilas V, Philip D, Mathew J (2014) Catalytically and biologically active silver nanoparticles synthesized using essential oil. Spectrochim Acta A Mol Biomol Spectrosc 132:743–750

    Article  CAS  PubMed  Google Scholar 

  • Vignesh V, Felix Anbarasi K, Karthikeyeni S, Sathiyanarayanan G, Subramanian P, Thirumurugan R (2013) A superficial phyto-assisted synthesis of silver nanoparticles and their assessment on hematological and biochemical parameters in Labeo rohita (Hamilton, 1822). Colloids Surf A 439:184–192. doi:10.1016/j.colsurfa.2013.04.011

  • Vijay Kumar PPN, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Ind Crops Prod 52:562–566. doi:10.1016/j.indcrop.2013.10.050

  • Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod 41:235–240. doi:10.1016/j.indcrop.2012.04.017

  • Waller G (2012) Alkaloid biology and metabolism in plants. Springer Science & Business Media

  • Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Mater 18(9):1109–1120

    Article  CAS  Google Scholar 

  • Zhang Y, Cheng X, Zhang Y, Xue X, Fu Y (2013) Biosynthesis of silver nanoparticles at room temperature using aqueous aloe leaf extract and antibacterial properties. Colloids Surf A 423:63–68. doi:10.1016/j.colsurfa.2013.01.059

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Higher Education Commission (HEC) of Pakistan, and their support is gratefully acknowledged.

Conflict of interest

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. These authors contributed equally. All the authors declare no conflict of interest.

Compliance with ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhtar Nadhman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashwani, ZuR., Khan, T., Khan, M.A. et al. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl Microbiol Biotechnol 99, 9923–9934 (2015). https://doi.org/10.1007/s00253-015-6987-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6987-1

Keywords

Navigation