Skip to main content
Log in

Biopolymers for sample collection, protection, and preservation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

One of the principal challenges in the collection of biological samples from air, water, and soil matrices is that the target agents are not stable enough to be transferred from the collection point to the laboratory of choice without experiencing significant degradation and loss of viability. At present, there is no method to transport biological samples over considerable distances safely, efficiently, and cost-effectively without the use of ice or refrigeration. Current techniques of protection and preservation of biological materials have serious drawbacks. Many known techniques of preservation cause structural damages, so that biological materials lose their structural integrity and viability. We review applications of a novel bacterial preservation process, which is nontoxic and water soluble and allows for the storage of samples without refrigeration. The method is capable of protecting the biological sample from the effects of environment for extended periods of time and then allows for the easy release of these collected biological materials from the protective medium without structural or DNA damage. Strategies for sample collection, preservation, and shipment of bacterial, viral samples are described. The water-soluble polymer is used to immobilize the biological material by replacing the water molecules within the sample with molecules of the biopolymer. The cured polymer results in a solid protective film that is stable to many organic solvents, but quickly removed by the application of the water-based solution. The process of immobilization does not require the use of any additives, accelerators, or plastifiers and does not involve high temperature or radiation to promote polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahamsen JF, Bakken AM, Bruserud O (2002) Cryopreserving human peripheral blood progenitor cells with 5-percent rather than 10-percent DMSO results in less apoptosis and necrosis in CD34+ cells. Transfusion 42(12):1573–1580

    Article  CAS  PubMed  Google Scholar 

  • Baldwin TC, Quah PE, Menzies AR (1999) A serotaxonomic study of Acacia gum exudates. Phytochemistry 50(4):599–606

    Article  CAS  Google Scholar 

  • Beal C, Fonseca F, Corrieu G (2001) Resistance to freezing and frozen storage of Streptococcus thermophilus is related to membrane fatty acid composition. J Dairy Sci 84(11):2347–2356

    Article  CAS  PubMed  Google Scholar 

  • Biomatrica (2013) Biostability http://www.biomatrica.com/index.html. Publisher

  • Broadbent JR, Lin C (1999) Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiology 39(1):88–102

    Article  CAS  PubMed  Google Scholar 

  • Buchanan SS, Pyatt DW, Carpenter JF (2010) Preservation of differentiation and clonogenic potential of human hematopoietic stem and progenitor cells during lyophilization and ambient storage. PLoS ONE 5(9):e12518. doi:10.1371/journal.pone.0012518

    Article  PubMed Central  PubMed  Google Scholar 

  • Carpenter JF, Hand SC, Crowe LM, Crowe JH (1986) Cryoprotection of phosphofructokinase with organic solutes: characterization of enhanced protection in the presence of divalent cations. Arch Biochem Biophys 250(2):505–512

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FXFX, Gibbs P (2004) Relevant factors for the preparation of freeze-dried lactic acid bacteria. International Dairy Journal In Press, Corrected Proof

  • Chen T, Acker JP, Eroglu A, Cheley S, Bayley H, Fowler A, Toner M (2001) Beneficial effect of intracellular trehalose on the membrane integrity of dried mammalian cells. Cryobiology 43(2):168–181. doi:10.1006/cryo.2001.2360

    Article  CAS  PubMed  Google Scholar 

  • Conrad PB, Miller DP, Cielenski PR, de Pablo JJ (2000) Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiology 41(1):17–24

    Article  CAS  PubMed  Google Scholar 

  • Corcoran BM, Ross RP, Fitzgerald GF, Stanton C (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96(5):1024–1039

    Article  CAS  PubMed  Google Scholar 

  • Davis SC, Diegel SW, Boundy RG (2014) Transportation energy data book: Edition 33 U.S. Department of Energy cta.ornl.gov/data

  • Dynalon (2011) Labware http://www.dynalabcorp.com/documents/Dynalon2011_LR.pdf.

  • EIA (2012) Annual energy review http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0303. US Energy Information Administration

  • Foerst P, Kulozik U, Schmitt M, Bauer S, Santivarangkna C (2012) Storage stability of vacuum-dried probiotic bacterium Lactobacillus paracasei F19. Food Bioprod Process 90(2):295–300. doi:10.1016/j.fbp.2011.06.004

    Article  CAS  Google Scholar 

  • Gouesbet G, Jan G, Boyaval P (2001) Lactobacillus delbrueckii ssp. bulgaricus thermotolerance. Lait 81:301–309

    Article  CAS  Google Scholar 

  • Gray MA, Pratte ZA, Kellogg CA (2013) Comparison of DNA preservation methods for environmental bacterial community samples. FEMS Microbiol Ecol 83(2):468–477. doi:10.1111/1574-6941.12008

    Article  CAS  PubMed  Google Scholar 

  • Hino A, Mihara K, Nakashima K, Takano H (1990) Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microbiol 56(5):1386–1391

    CAS  PubMed Central  PubMed  Google Scholar 

  • JECFA (1998) Gum arabic. Food and nutritional paper 52(Addendum 6). FAO, Rome

    Google Scholar 

  • Joseleau J-P, Ullmann G (1990) Biochemical evidence for the site of formation of gum arabic in Acacia senegal. Phytochemistry 29(11):3401–3405

    Article  CAS  Google Scholar 

  • Katzin LI, Sandholzer LA, Strong ME (1943) Application of the decimal reduction time principle to a study of the resistance of Coliform bacteria to pasteurization. J Bacteriol 45(3):265–272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelly CD, Egan C, Cirino NM (2006) The CODE RED solution: biothreat response training for first responders. Biosecur Bioterror 4(4):391–396. doi:10.1089/bsp.2006.4.391

    Article  PubMed  Google Scholar 

  • Krumnow AA, Sorokulova IB, Olsen E, Globa L, Barbaree JM, Vodyanoy VJ (2009) Preservation of bacteria in natural polymers. J Microbiol Methods 78(2):189–194

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Crouse CA, Lline MC (2014) Optimizing storage and handling of DNA extracts. In: Shewale JG, Liu EH (eds) Forensic DNA analysis. CRC Press, Boca Raton, pp 19–38

    Google Scholar 

  • Leslie S, Israeli E, Lighthart B, Crowe J, Crowe L (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61(10):3592–3597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74(1–2):79–86

    Article  PubMed  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247(3 Pt 1):C125–C142

    CAS  PubMed  Google Scholar 

  • Meunier O, Hernandez C, Piroird M, Heilig R, Steinbach D, Freyd A (2005) Bacteriological sampling of surfaces: importance of the step of enrichment and the choice of the culture media. Ann Biol Clin (Paris) 63(5):481–486

    CAS  Google Scholar 

  • Michel C, Kravtchenko TP, David A, Gueneau S, Kozlowski F, Cherbut C (1998) In vitro prebiotic effects of Acacia gums onto the human intestinal microbiota depends on both botanical origin and environmental pH. Anaerobe 4(6):257–266

    Article  CAS  PubMed  Google Scholar 

  • Mocak J, Jurasek P, Phillips GO, Varga S, Casadei E, Chikemai BN (1998) The classification of natural gums. X. Chemometric characterization of exudate gums that conform to the revised specification of the gum arabic for food use, and the identification of adulterants. Food Hydrocoll 12(2):141–150

    Article  CAS  Google Scholar 

  • Moslemy P, Neufeld RJ, Guiot SR (2002) Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Biotechnol Bioeng 80(2):175–184

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Rojas J, Bernal P, Duque E, Godoy P, Segura A, Ramos JL (2006) Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Appl Environ Microbiol 72(1):472–477. doi:10.1128/aem.72.1.472-477.2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • NEWWA (2008) Sampling guide for first responders to drinking water contamination threats and incidents http://www.epa.gov/region1/eco/drinkwater/pdfs/1stRespondersGuide.pdf. New England Water Works Association

  • O’Riordan K, Andrews D, Buckle K, Conway P (2001) Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J Appl Microbiol 91(6):1059–1066

    Article  PubMed  Google Scholar 

  • ODH (2008) Environmental sample collection guide http://www.wvdhhr.org/labservices/shared/docs/bt/oh_state_laboratory_submission_guidelines.pdf. Ohio department of health laboratories

  • Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7(2–3):57–66. doi:10.1016/0167-7012(87)90025-X

    Article  CAS  Google Scholar 

  • Panoff J-M, Thammavongs B, Gueguen M (2000) Cryoprotectants lead to phenotypic adaptation to freeze-thaw stress in Lactobacillus delbrueckii ssp. bulgaricus CIP 101027T. Cryobiology 40(3):264–269

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Crowley DE (2005) Normalization of soil DNA extraction for accurate quantification of target genes by real-time PCR and DGGE. Biotechniques 38(4):579–586

    Article  CAS  PubMed  Google Scholar 

  • Roger S (1994) Guide to sampling air, water, soil, and vegetation for chemical analysis. In: State of California Environmental Protection Agency DoPR (ed). vol EH 94–04. Environmental hazards Assessment Program, Sacramento, California, p 1–57

  • Rojas-Tapias D, Ortiz-Vera M, Rivera D, Kloepper J, Bonilla R (2013) Evaluation of three methods for preservation of Azotobacter chroococcum and Azotobacter vinelandii. Univ Sci 18:129–139

    Article  CAS  Google Scholar 

  • Rojas-Tapias D, Sierra OO, Botía DR, Bonilla R (2015) Preservation of Azotobacter chroococcum vegetative cells in dry polymers. Univ Sci 20(2):201–207

    Google Scholar 

  • Rutala WA, White MS, Gergen MF, Weber DJ (2006) Bacterial contamination of keyboards: efficacy and functional impact of disinfectants. Infect Control Hosp Epidemiol 27(4):372–377

    Article  PubMed  Google Scholar 

  • Sanchez C, Renard D, Robert P, Schmitt C, Lefebvre J (2002) Structure and rheological properties of acacia gum dispersions. Food Hydrocoll 16(3):257–267

    Article  CAS  Google Scholar 

  • Sano F, Asakawa N, Inoue Y, Sakurai M (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39(1):80–87. doi:10.1006/cryo.1999.2188

    Article  CAS  PubMed  Google Scholar 

  • Sorokulova I, Watt J, Olsen E, Globa L, Moore T, Barbaree J, Vodyanoy V (2012) Natural biopolymer for preservation of microorganisms during sampling and storage. J Microbiol Methods 88:140–146

    Article  CAS  PubMed  Google Scholar 

  • Sorokulova IB, Krumnow AA, Pathirana S, Mandell AJ, Vodyanoy V (2008) Novel methods for storage stability and release of Bacillus spores. Biotechnol Prog 24(5):1147–1153

    Article  CAS  PubMed  Google Scholar 

  • Temprano G, Garrido D, Daquino M (2004) Comparative study of airborne viable particles assessment methods in microbiological environmental monitoring. PDA J Pharm Sci Technol 58(4):215–221

    CAS  PubMed  Google Scholar 

  • Teramoto N, Sachinvala ND, Shibata M (2008) Trehalose and trehalose-based polymers for environmentally benign, biocompatible and bioactive materials. Molecules 13(8):1773–1816

    Article  CAS  PubMed  Google Scholar 

  • Welsh DT, Herbert RA (1999) Osmotically induced intracellular trehalose, but not glycine betaine accumulation promotes desiccation tolerance in Escherichia coli. FEMS Microbiol Lett 174(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • YETI (2013) Ice retention http://www.yeticoolers.com/pages/FAQ.html.

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Air Force CRADA grant 13-268-SG-C13016. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the US Government.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Vodyanoy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 121 kb)

(MP4 6009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokulova, I., Olsen, E. & Vodyanoy, V. Biopolymers for sample collection, protection, and preservation. Appl Microbiol Biotechnol 99, 5397–5406 (2015). https://doi.org/10.1007/s00253-015-6681-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6681-3

Keywords

Navigation