Skip to main content
Log in

Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afrapoli MS, Alipour S, Torsaeter O (2012) Analysis of microscopic displacement mechanisms of a mior process in porous media with different wettability. Transp Porous Media 93(3):705–719. doi:10.1007/s11242-012-9978-z

    Article  CAS  Google Scholar 

  • AI-Sulaimani H, AI-Wahaibi Y, AI-Bahry S, Elshafie A, AI-Bemani A, Joshi S (2012) Residual-oil recovery through injection of biosurfactan, chemical surfactant, and mixtures of both under reservoir temperatures: induced-wettability and interfacial-tension effects. SPE Reserv Eval Eng 15(2):210–216. doi:10.2118/158022-PA

    Article  Google Scholar 

  • AI-Wahaibia Y, Joshib S, Al-Bahryb S, Elshafieb A, Al-Bemania A, Shibulal B (2014) Biosurfactant production by Bacillus subtilis B30 and its application in enhancing oil recovery. Colloids Surf B Biointerfaces 114(1):324–333. doi:10.1016/j.colsurfb. 2013.09.022

    Article  Google Scholar 

  • Armstrong RT, Wildenschild D (2012) Microbial enhanced oil recovery in fractional-wet systems: a pore-scale investigation. Transp Porous Media 92(3):819–835. doi:10.1007/s11242-011-9934-3

    Article  CAS  Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51:1–12. doi:10.1016/0960-8524(94)00101-6

    Article  CAS  Google Scholar 

  • Bryant RS, Burchfield TE (1989) Review of microbial technology for improving oil recovery. SPE Reserv Eval Eng 4:151–154. doi:10.2118/16646-PA

    Article  CAS  Google Scholar 

  • Cao G, Liu T, Ba Y, Xu D, Wang T, Zhao F, Shu Q (2013) Microbial flooding after polymer flooding pilot test in Ng3 of Zhong1 area, Gudao oil⁃field. Petrol Geol Recover Effic 20(6):94–96. doi:10.3969/j.issn.1009-9603. 2013.06.023

    CAS  Google Scholar 

  • Cao G, Ba Y, Liu T, Bi A, Yao H (2014) Field pilot test of indigenous microbial flooding in block Zhan-3. Spec Oil Gas Reserv 21(1):145–147. doi:10.3969/j.issn.1006-6535.2014.01.037

    Google Scholar 

  • Chang MM, Bryant RS, Chung TH, Gao HW (1991) Modeling and laboratory Investigations of microbial transport phenomena in porous media. SPE 22845. doi:10.2118/22845-MS

  • Dastgheib SMM, Amoozegar MA, Elahi E, Asad S, Banat IM (2008) Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbial enhanced oil recovery. Biotechnol Lett 30:263–270. doi:10.1007/ s10529-007-9530-3

    Article  CAS  PubMed  Google Scholar 

  • Gang HZ, Liu MT, Mu BZ (2008) Modeling of microorganisms transport in a cylindrical pore. J Ind Microbiol Biotechnol 35(6):495–500. doi:10.1007/s10295 -008-0307-z

    Article  CAS  PubMed  Google Scholar 

  • Gao CH, Zekri A (2011) Applications of microbial-enhanced oil recovery technology in the past decade. Energy Sources A Recover Util Environ Eff 33:972–989. doi:10.1080/15567030903330793

    Article  CAS  Google Scholar 

  • Gao P, Li G, Dai X, Dai L, Wang H, Zhao L, Chen Y, Ma T (2013) Nutrients and oxygen alter reservoir biochemical characters and enhance oil recovery during biostimulation. World J Microbiol Biotechnol 29(11):2045–2054. doi:10.1007/ s11274-013-1367-4

    Article  CAS  PubMed  Google Scholar 

  • Ghojavand H, Vahabzadeh F, Shahraki AK (2012) Enhanced oil recovery from low permeability dolomite cores using biosurfactant produced by a Bacillus mojavensis (PTCC 1696) isolated from Masjed-I Soleyman field. J Pet Sci Eng 81:24–30. doi:10.1016/j.petrol.2011.12.002

    Article  CAS  Google Scholar 

  • Gray ND, Sherry A, Larter SR, Erdmann M, Leyris J, Liengen T, Beeder J, Head IM (2009) Biogenic methane production in formation waters from a large gas field in the North Sea. Extremophiles 13(3):511–519. doi:10.1007/s00792-009-0237-3

    Article  CAS  PubMed  Google Scholar 

  • Halim A, Shapiro A, Lantz AE, Nielsen SM (2014) Experimental study of bacterial penetration into chalk rock: mechanisms and effect on permeability. Transp Porous Media 101(1):1–15. doi:10.1007/s11242-013-0227-x

    Article  CAS  Google Scholar 

  • Karimi M, Mahmoodi M, Niazi A, AI-Wahaibi Y, Ayatollahi S (2012) Investigating wettability alteration during MEOR process, a micro/macro scale analysis. Colloids Surf B Biointerfaces 95:129–136. doi:10.1016/j.colsurfb.2012.02.035

    Article  CAS  PubMed  Google Scholar 

  • Kaster KM, Hiorth A, Kjeilen-Eilertsen G, Boccadoro K, Lohne A, Berland H, Stavland A, Brakstad OG (2012) Mechanisms involved in microbially enhanced oil recovery. Transp Porous Media 91(1):59–79. doi:10.1007/s11242-011-9833-7

    Article  CAS  Google Scholar 

  • Nazina TN, Pavlova NK, Ni F, Shestakova NM, Ivoilov VS, Feng Q, Zhao D, Prusakova TS, Belyaev SS, Ivanov MV (2008) Regulation of geochemical activity of microorganisms in a petroleum reservoir by injection of H2O2 or water-air mixture. Microbiology 77(3):324–333. doi:10.1134/S0026261708030120

    Article  CAS  Google Scholar 

  • Nielsen SM, Shapiro AA, Michelsen ML, Stenby EH (2010) 1D simulations for microbial enhanced oil recovery with metabolite partitioning. Transp Porous Media 85(3):785–802. doi:10.1007/s11242-010-9592-x

    Article  CAS  Google Scholar 

  • Nielsen SM, Nesterov I, Shapiro AA (2014) Simulations of microbial-enhanced oil recovery: adsorption and filtration. Transp Porous Media 102(2):227–259. doi:10.1007/s11242-014-0273-z

    Article  CAS  Google Scholar 

  • Qin H, Yang H, Qiao Z, Gao S, Liu Z (2013) Identification and characterization of a Bacillus subtilis strain HB-1 isolated from Yandou, a fermented soybean food in China. Food Control 31(1):22–27. doi:10.1016/j.foodcont.2012.10.004

    Article  CAS  Google Scholar 

  • Rabiei A, Sharifinik M, Niazi A, Hashemi A, Ayatollahi S (2013) Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir. Appl Microbiol Biotechnol 97(13):5979–5991. doi:10.1007/s00253-013-4863-4

    Article  CAS  PubMed  Google Scholar 

  • Ren HY, Zhang XJ, Song ZY, Rupert W, Gao GJ, Guo SX, Zhao LP (2011) Comparison of microbial community compositions of injection and production well samples in a long-term water-flooded petroleum reservoir. PLoS ONE 6(8), e23258. doi:10.1371/journal.pone.0023258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • She YH, Zhang F, Xia JJ, Kong SQ, Wang ZL, Shu FC, Hu JM (2011) Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding. Appl Biochem Biotechnol 163:223–234. doi:10.1007/s12010-010-9032-y

    Article  CAS  PubMed  Google Scholar 

  • Simpson DR, Natraj NR, McInerney MJ, Duncan KE (2011) Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl Microbiol Biotechnol 91:1083–1093. doi:10.1007/ s00253-011-3326-z

    Article  CAS  PubMed  Google Scholar 

  • Song ZY, Guo LY, Yuan SW, Hao B, Wu XL (2010) Microbial plugging and community distribution of indigenous thermophilic microbes in high temperature oil reservoirs. Acta Pet Sin 31(6):975–979. doi:10.7623/syxb201006017

    CAS  Google Scholar 

  • Thrasher D, Puckett DA, Davies A, Beattie G, Gordon PG, Boccardo G, Vance I, Jackson S (2010) MEOR from lab to field. SPE: 129701. doi:10.2118/129701-MS

  • Weidong W, Junzhang L, Xueli G, Jing W, Ximing L, Yan J, Fengmin Z (2014) MEOR field test at block Luo801 of Shengli oil field in China. Pet Sci Technol 32(6):673–679. doi:10.1080/10916466.2011.601507

    Article  CAS  Google Scholar 

  • Xia WJ, Luo ZB, Dong HP, Yu L (2013) Studies of biosurfactant for microbial enhanced oil recovery by using bacteria isolated from the formation water of a petroleum reservoir. Pet Sci Technol 31(21):2311–2317. doi:10.1080/ 10916466.2011.569812

    Article  CAS  Google Scholar 

  • Youssef N, Simpson DR, McInerney MJ, Duncan KE (2013) In-situ lipopeptide biosurfactant production by Bacillus strains correlates with improved oil recovery in two oil wells approaching their economic limit of production. Int Biodeterior Biodegrad 81:127–132. doi:10.1016/j.ibiod.2012.05.010

    Article  CAS  Google Scholar 

  • Yu DF, Dong HP, Yu L, Cui QF, Xia WJ, Yu DX (2012) Laboratory study of indigenous microorganism activation system in long core. Oilfield Chem 29(2):236–239

    CAS  Google Scholar 

  • Zahner RL, Sheehy A, Govreau BR (2010) MEOR success in southern California. SPE: 129742. doi:10.2118/129742-MS

  • Zhao LX, Ma T, Gao ML, Gao PK, Cao MN, Zhu XD, Li GQ (2012) Characterization of microbial diversity and community in water flooding oil reservoirs in China. World J Microbiol Biotechnol 28:3039–3052. doi:10.1007/s11274-012-1114-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study has been supported by the National Natural Science Foundation of China (11372033) and Special Foundation of Ministry of Education of China (FRF-MP-B12006B).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Zhu, W., Sun, G. et al. Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments. Appl Microbiol Biotechnol 99, 6551–6561 (2015). https://doi.org/10.1007/s00253-015-6586-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6586-1

Keywords

Navigation