Skip to main content
Log in

The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In order to understand the role of N1 domain (1–257 aa) in the amylopullulanase (gt-apu) of the extremely thermophilic bacterium Geobacillus thermoleovorans NP33, N1 deletion construct (gt-apuΔN) has been generated and expressed in Escherichia coli. The truncated amylopullulanase (gt-apuΔN) exhibits similar pH and temperature optima like gt-apu, but enhanced thermostability. The gt-apuΔN has greater hydrolytic action and specific activity on pullulan than gt-apu. The k cat (starch and pullulan) and K m (starch) values of gt-apuΔN increased, while K m (pullulan) decreased. The enzyme upon N1 deletion hydrolyzed maltotetraose as the smallest substrate in contrast to maltopentaose of gt-apu. The role of N1 domain of gt-apu in raw starch binding has been confirmed, for the first time, based on deletion and Langmuir–Hinshelwood kinetics. Furthermore, N1 domain appears to exert a negative influence on the thermostability of gt-apu because N1 truncation significantly improves thermostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe A, Yoshida H, Tonozuka T, Sakano Y, Kamitori S (2005) Complexes of Thermoactinomyces vulgaris R-47 a-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with α-(1,6) glycosidic linkages. FEBS J 272:6145–6153

    Article  CAS  PubMed  Google Scholar 

  • Aoki H, Yopi, Sakano Y (1997) Molecular cloning and heterologous expression of the isopullulanase gene from Aspergillus niger A.T.C.C. 9642. Biochem J 323:757–764

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ara K, Igarashi K, Saeki K, Ito S (1995) An alkaline amylopullulanase from alkaliphilic Bacillus sp. KSM-1378; kinetic evidence for two independent active sites for the α-1,4 and α-1,6 hydrolytic reactions. Biosci Biotechnol Biochem 59:662–665

    Article  CAS  Google Scholar 

  • Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, ShiBano Y, Tanaka T, Amachi T, Yoshizumi H (1986) Rhizopus raw-starch-degrading glucoamylase: its cloning and expression in yeast. Agric Biol Chem 50:957–964

    Article  CAS  Google Scholar 

  • Bertoldo C, Armbrecht M, Becker F, Schafer T, Antranikian G, Liebl W (2004) Cloning, sequencing, and characterization of a heat- and alkali-stable type I pullulanase from Anaerobranca gottschalkii. Appl Environ Microbial 70(6):3407–3416

  • Bozonnet S, Jensen MT, Nielsen MM, Aghajari N, Jensen MH, Kramhoft B, Willemoes M, Tranier S, Haser R, Svensson B (2007) The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley-amylase participates in substrate binding and activity. FEBS J 274:5055–5067

    Article  CAS  PubMed  Google Scholar 

  • Brunswick JM, Kelly CT, Fogarty WM (1999) The amylopullulanase of Bacillus sp. DSM 405. Appl Microbiol Biotechnol 51:170–175

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.1093/nar/gkn663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christiansen C, Abou Hachem M, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B (2009) The carbohydrate-binding module family 20—diversity, structure, and function. FEBS J 276:5006–5029

    Article  CAS  PubMed  Google Scholar 

  • Dumbrepatil AB, Choi JH, Park JT, Kim MJ, Kim TJ, Woo EJ, Park KH (2010) Structural features of the Nostoc punctiforme debranching enzyme reveal the basis of its mechanism and substrate specificity. Proteins 78:348–356

    Article  CAS  PubMed  Google Scholar 

  • Erra-Pujada M, Debeire P, Duchiron F, O’Donohue MJ (1999) The type II pullulanase of Thermococcus hydrothermalis: molecular characterization of the gene and expression of the catalytic domain. J Bacteriol 181:3284–3287

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fetrow JS (1995) Omega loops: nonregular secondary structures significant in protein function and stability. FASEB J 9:708–717

    CAS  PubMed  Google Scholar 

  • Gao X, Liu Z, Cui W, Zhou L, Tian Y, Zhou Z (2014) Enhanced thermal stability and hydrolytic ability of Bacillus subtilis aminopeptidase by removing the thermal sensitive domain in the non-catalytic region. PLoS One. doi:10.1371/journal.pone.0092357

    Google Scholar 

  • Guillén D, Santiago M, Linares L, Pérez R., Morlon J, Ruiz B, Sánchez S, Rodríguez-Sanoja R (2007) Alpha-amylase starch binding domains: cooperative effects of binding to starch granules of multiple tandemly arranged domains. Appl Environ Microbiol 73:3833–3837

  • Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5:212–223

    Article  CAS  Google Scholar 

  • Hatada Y, Igarashi K, Ozaki K, Ara K, Hitomi J, Kobayashi T, Kawai S, Watabe T, Ito S (1996) Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes α-1,4 and α-1,6 linkages in polysaccharides at different active sites. J Biol Chem 271:24075–24083

    Article  CAS  PubMed  Google Scholar 

  • Hondoh H, Kuriki T, Matsuura Y (2003) Three-dimensional structure and substrate binding of Bacillus stearothermophilus Neopullulanase. J Mol Biol 326:177–188

    Article  CAS  PubMed  Google Scholar 

  • Ibuka A, Tonozuka T, Matsuzawa H, Sakai H (1998) Conversion of neopullulanase α-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulanase type enzyme. J Biochem 123:275–282

    Article  CAS  PubMed  Google Scholar 

  • Janecek S (2005) Amylolytic families of glycoside hydrolases: focus on the family GH-57. Biologia 60(suppl 16):177–184

    CAS  Google Scholar 

  • Janecek S, Svensson B, MacGregor EA (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzym Microb Technol 49:429–440

    Article  CAS  Google Scholar 

  • Jung TY, Li D, Park JT, Yoon SM, Tran PL, Oh BH, Janeček Š, Park SG, Woo EJ, Park KH (2012) Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus. J Biol Chem 287:7979–7989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kahar UM, Chan K-G, Salleh MM, Hii SM, Goh KM (2013) A high molecular-mass Anoxybacillus sp. SK3-4 amylopullulanase: characterization and its relationship in carbohydrate utilization. Int J Mol Sci 14:11302–11318

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamitori S, Kondo S, Okuyama K, Yokota T, Shimura Y, Tonozuka T, Sakano Y (1999) Crystal structure of Thermoactinomyces vulgaris R-47 α-amylase II (TVAII) hydrolyzing cyclodextrins and pullulan at 2.6 A° resolution. J Mol Biol 287:907–921

    Article  CAS  PubMed  Google Scholar 

  • Katsuya Y, Mezaki Y, Kubota M, Matsuura Y (1998) Three-dimensional structure of Pseudomonas isoamylase at 2.2 A° resolution. J Mol Biol 281:885–897

    Article  CAS  PubMed  Google Scholar 

  • Kelkar HS, Deshpande MV (1993) Purification and characterization of a pullulan-hydrolyzing glucoamylase from Sclerotium rolfsii. Starch 45(10):361–368

    Article  CAS  Google Scholar 

  • Kim C-H, Kim YS (1995) Substrate specificity and detailed characterization of a bifunctional amylase-pullulanase enzyme from Bacillus circulans F-2 having two different active sites on one polypeptide. Eur J Biochem 227:687–693

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Sunako M, Ono H, Murooka Y, Fukusaki E, Yamashita M (2008) Characterization of gene encoding amylopullulanase from plant-originated lactic acid bacterium, Lactobacillus plantarum L137. J Biosci Bioeng 106:449–459

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Sunako M, Ono H, Murooka Y, Fukusaki E, Yamashita M (2009) Characterization of the C-terminal truncated form of amylopullulanase from Lactobacillus plantarum L137. J Biosci Bioeng 107:124–129

    Article  CAS  PubMed  Google Scholar 

  • Klock HE, Koesema EJ, Knuth MW, Lesley SA (2008) Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins 71:982–994

  • Kornacker MG, Pugsley AP (1990) The normally periplasmic enzyme p-lactamase is specifically and efficiently translocated through the Escherichia coli outer membrane when it is fused to the cell surface enzyme pullulanase. Mol Microbiol 4:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2011) Identification of the sequence motif of glycoside hydrolase 13 family members. Bioinformation 6:61–63

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuriki T, Okada S, Imanaka T (1988) New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis. J Bacteriol 170:1554–1559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuriki T, Kaneko H, Yanase M, Takata H, Shimada J, Handa S, Takada T, Umeyama H, Okada S (1996) Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. J Biol Chem 271:17321–17329

    Article  CAS  PubMed  Google Scholar 

  • Lee S-P, Morikawa M, Takagi M, Imanaka T (1994) Gene cloning and characterization of α-amylase-pullulanase (AapT) from thermophilic and alkaliphilic Bacillus sp. XAL601. Appl Environ Microbiol 60:3764–3773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee H-S, Kim M-S, Cho H-S, Kim J-I, Kim T-J, Choi J-H, Park C, Lee H-S, Oh B-H, Park K-H (2002) Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem 277:21891

    Article  CAS  PubMed  Google Scholar 

  • Lin HY, Chuang HH, Lin FP (2008) Biochemical characterization of engineered amylopullulanase from Thermoanaerobacter ethanolicus 39E-implicating the non-necessity of its 100 C-terminal amino acid residues. Extremophiles 12:641–650

    Article  CAS  PubMed  Google Scholar 

  • Lin FP, Ma HY, Lin HJ, Liu SM, Tzou WS (2011) Biochemical characterization of two truncated forms of amylopullulanase from Thermoanaerobacterium saccharolyticum NTOU1 to identify its enzymatically active region. Appl Biochem Biotechnol 165:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lu X, Liu S, Feng Y, Rao S, Zhou X, Wang M, Du G, Chen J (2014) Enhanced thermal stability of Pseudomonas aeruginosa lipoxygenase through modification of two highly flexible regions. Appl Microbiol Biotechnol 98:1663–1669

    Article  CAS  PubMed  Google Scholar 

  • MacGregor EA, Janecek S, Svensson B (2001) Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta 1546:1–20

    Article  CAS  PubMed  Google Scholar 

  • Malakauskas SM, Mayo SL (1998) Design, structure and stability of a hyperthermophilic protein variant. Nat Struct Mol Biol 5:470–475

    Article  CAS  Google Scholar 

  • Melasniemi H (1988) Purification and some properties of the extracellular α-amylase pullulanase produced by Clostridium thermohydrosulfuricum. Biochem J 250:813–8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Nisha M, Satyanarayana T (2013a) Characterization of recombinant amylopullulanase (gt-apu) and truncated amylopullulanase (gt-apuT) of the extreme thermophile Geobacillus thermoleovorans NP33 and their action in starch saccharification. Appl Microbiol Biotechnol 97:6279–6292

    Article  CAS  PubMed  Google Scholar 

  • Nisha M, Satyanarayana T (2013b) Recombinant bacterial amylopullulanases: developments and perspectives. Bioengineered 4:1–13

    Article  Google Scholar 

  • Peng H, Zheng Y, Chen M, Wang Y, Xiao Y, Gao Y (2014) A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett 588:1161–1167

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum JL, Hortin GL, Smith CH, Pashos GE, Landt M (1992) Macroamylases: differences in activity against various-sized substrates. Clin Chem 38:1725–1729

    CAS  PubMed  Google Scholar 

  • Satyanarayana T, Noorwez SM, Kumar S, Rao JL, Ezhilvannan M, Kaur P (2004) Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles. Biochem Soc Trans 32:276–278

    Article  CAS  PubMed  Google Scholar 

  • Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555–562

    Article  CAS  PubMed  Google Scholar 

  • Svensson B, Jensen MT, Mori H, Bak-Jensen KS, Bonsager B, Nielsen PK, Kramhoft B, Pretorius-Ibba M, Nohr J, Juge N, Greffe L, Williamson G, Driguez H (2002) Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia 11:5–19

    Google Scholar 

  • Tan TC, Mijts BN, Swaminathan K, Patel BKC, Divne C (2008) Crystal structure of the polyextremophilic α-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. J Mol Biol 378:852–870

    Article  PubMed  Google Scholar 

  • Tonozuka T, Mogi S, Shimura Y, Ibuka A, Sakai H, Matsuzawa H, Sakano Y, Ohta T (1995) Comparison of primary structures and substrate specificities of two pullulan-hydrolyzing α-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47. Biochim Biophys Acta 1252:35–42

    Article  PubMed  Google Scholar 

  • Turkenburg JP, Brzozowski AM, Svendsen A, Borchert TV, Davies GJ, Wilson KS (2006) Structure of a pullulanase from Bacillus acidopullulyticus. Proteins 76:516–519

    Article  Google Scholar 

  • Xu J, Ren F, Huang C-H, Zheng Y, Zhen J, Sun H, Ko T-P, He M, Chen C-C, Chan H-C, Guo R-T, Song H, Ma Y (2014) Functional and structural studies of pullulanase from Anoxybacillus sp. LM18-11. Proteins 82:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Matsumoto D, Murooka Y (1997) Amino acid residues specific for the catalytic action towards α-1,6-glucosidic linkages in Klebsiella pullulanase. J Ferment Bioeng 84:283–290

    Article  CAS  Google Scholar 

  • Yokota SI, Yanagi H, Yura T, Kubota H (2000) Upregulation of cytosolic chaperonin CCT subunits during recovery from chemical stress that causes accumulation of unfolded proteins. Eur J Biochem 267:1658–1664

    Article  CAS  PubMed  Google Scholar 

  • Zareian S, Khajeh K, Ranjbar B, Dabirmanesh B, Ghollasi M, Mollania N (2010) Purification and characterization of a novel amylopullulanase that converts pullulan to glucose, maltose, and maltotriose and starch to glucose and maltose. Enzym Microb Technol 46:57–63

    Article  CAS  Google Scholar 

  • Zhou C, Xue Y, Ma Y (2010) Enhancing the thermostability of α-glucosidase from Thermoanaerobacter tengcongensis MB4 by single proline substitution. J Biosci Bioeng 110:12–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial assistance from the Department of Science and Technology, Govt. of India, New Delhi, as the PURSE grant. Thanks are also due to Council of Scientific and Industrial Research (CSIR) and Indian Council of Medical Research (ICMR), Govt. of India, for awarding fellowship to NM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Satyanarayana.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisha, M., Satyanarayana, T. The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans . Appl Microbiol Biotechnol 99, 5461–5474 (2015). https://doi.org/10.1007/s00253-014-6345-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6345-8

Keywords

Navigation