Skip to main content
Log in

Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Using methanol as an alternative non-food feedstock for biotechnological production offers several advantages in line with a methanol-based bioeconomy. The Gram-positive, facultative methylotrophic and thermophilic bacterium Bacillus methanolicus is one of the few described microbial candidates with a potential for the conversion of methanol to value-added products. Its capabilities of producing and secreting the commercially important amino acids l-glutamate and l-lysine to high concentrations at 50 °C have been demonstrated and make B. methanolicus a promising target to develop cell factories for industrial-scale production processes. B. methanolicus uses the ribulose monophosphate cycle for methanol assimilation and represents the first example of plasmid-dependent methylotrophy. Recent genome sequencing of two physiologically different wild-type B. methanolicus strains, MGA3 and PB1, accompanied with transcriptome and proteome analyses has generated fundamental new insight into the metabolism of the species. In addition, multiple key enzymes representing methylotrophic and biosynthetic pathways have been biochemically characterized. All this, together with establishment of improved tools for gene expression, has opened opportunities for systems-level metabolic engineering of B. methanolicus. Here, we summarize the current status of its metabolism and biochemistry, available genetic tools, and its potential use in respect to overproduction of amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anastassiadis S (2007) L-lysine fermentation. Recent Pat Biotechnol 1:11–24

    Article  CAS  PubMed  Google Scholar 

  • Anthony C (1982) The biochemistry of methylotrophs. Academic, London

    Google Scholar 

  • Arfman N, Watling EM, Clement W, van Oosterwijk RJ, de Vries GE, Harder W, Attwood MM, Dijkhuizen L (1989) Methanol metabolism in thermotolerant methylotrophic Bacillus strains involving a novel catabolic NAD-dependent methanol dehydrogenase as a key enzyme. Arch Microbiol 152:280–288

    Article  CAS  PubMed  Google Scholar 

  • Arfman N, Bystrykh L, Govorukhina NI, Dijkhuizen L (1990) 3-Hexulose-6-phosphate synthase from thermotolerant methylotroph Bacillus C1. Methods Enzymol 188:391–397

    Article  CAS  PubMed  Google Scholar 

  • Arfman N, Van Beeumen J, De Vries GE, Harder W, Dijkhuizen L (1991) Purification and characterization of an activator protein for methanol dehydrogenase from thermotolerant Bacillus spp. J Biol Chem 266:3955–3960

    CAS  PubMed  Google Scholar 

  • Arfman N, de Vries KJ, Moezelaar HR, Attwood MM, Robinson GK, van Geel M, Dijkhuizen L (1992a) Environmental regulation of alcohol metabolism in thermotolerant methylotrophic Bacillus strains. Arch Microbiol 157:272–278

    Article  CAS  PubMed  Google Scholar 

  • Arfman N, Dijkhuizen L, Kirchhof G, Ludwig W, Schleifer KH, Bulygina ES, Chumakov KM, Govorukhina NI, Trotsenko YA, White D, Sharp RJ (1992b) Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Bacteriol 42:439–445

    Article  CAS  PubMed  Google Scholar 

  • Arfman N, Hektor HJ, Bystrykh LV, Govorukhina NI, Dijkhuizen L, Frank J (1997) Properties of an NAD(H)-containing methanol dehydrogenase and its activator protein from Bacillus methanolicus. Eur J Biochem 244:426–433

    Article  CAS  PubMed  Google Scholar 

  • Beckers G, Nolden L, Burkovski A (2001) Glutamate synthase of Corynebacterium glutamicum is not essential for glutamate synthesis and is regulated by the nitrogen status. Microbiology 147:2961–2970

    Article  CAS  PubMed  Google Scholar 

  • Belitsky BR (ed) (2002) Bacillus subtilis and its closest relatives: from genes to cells. Biosynthesis of amino acids of the glutamate and aspartate families, alanine, and polyamines. American Society of Microbiology, Washington DC

  • Brautaset T, Ellingsen TE (2011) Food ingredients | lysine: industrial uses and production. In: Moo-Young M (ed) Comprehensive biotechnology, vol 3, 2nd edn. Elsevier, Amsterdam, The Netherlands, pp 541–554

    Chapter  Google Scholar 

  • Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC (2003) Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants. Appl Environ Microbiol 69:3986–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brautaset T, Jakobsen ØM, Flickinger MC, Valla S, Ellingsen TE (2004) Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 186:1229–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brautaset T, Jakobsen ØM, Josefsen KD, Flickinger MC, Ellingsen TE (2007) Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 °C. Appl Microbiol Biotechnol 74:22–34. doi:10.1007/s00253-006-0757-z

  • Brautaset T, Jakobsen ØM, Degnes KF, Netzer R, Nærdal I, Krog A, Dillingham R, Flickinger MC, Ellingsen TE (2010) Bacillus methanolicus pyruvate carboxylase and homoserine dehydrogenase I and II and their roles for L-lysine production from methanol at 50 °C. Appl Microbiol Biotechnol 87:951–964. doi:10.1007/s00253-010-2559-6

  • Chen NY, Jiang SQ, Klein DA, Paulus H (1993) Organization and nucleotide sequence of the Bacillus subtilis diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. J Biol Chem 268:9448–9465

    CAS  PubMed  Google Scholar 

  • Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622. doi:10.1111/j.1462-2920.2011.02464.x

    Article  CAS  PubMed  Google Scholar 

  • Chistoserdova L, Lidstrom ME (2013) Aerobic methylotrophic prokaryotes. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 267–285

    Chapter  Google Scholar 

  • Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cue D, Lam H, Hanson RS, Flickinger MC (1996) Characterization of a restriction-modification system of the thermotolerant methylotroph Bacillus methanolicus. Appl Environ Microbiol 62:1107–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cue D, Lam H, Dillingham RL, Hanson RS, Flickinger MC (1997) Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph. Appl Environ Microbiol 63:1406–1420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dijkhuizen L, Arfman N, Attwood MM, Brooke AG, Harder W, Watling EM (1988) Isolation and initial characterization of thermotolerant methylotrophic Bacillus strains. Fems Microbiol Lett 52:209–214

    Article  Google Scholar 

  • Eggeling L, Bott M (eds) (2005) Handbook of Corynebacterium glutamicum. CRC Press Boca Raton, USA

    Google Scholar 

  • Fernstrom JD (2009) Symposium summary. The roles of glutamate in taste, gastrointestinal function, metabolism, and physiology. Am J Clin Nutr 90:881S–885S. doi:10.3945/ajcn.2009.27462DD

    Article  CAS  PubMed  Google Scholar 

  • Graves LM, Switzer RL (1990) Aspartokinase III, a new isozyme in Bacillus subtilis 168. J Bacteriol 172:218–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grundy FJ, Lehman SC, Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A 100:12057–12062. doi:10.1073/pnas.2133705100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunka K, Newman JA, Commichau FM, Herzberg C, Rodrigues C, Hewitt L, Lewis RJ, Stülke J (2010) Functional dissection of a trigger enzyme: mutations of the Bacillus subtilis glutamate dehydrogenase RocG that affect differentially its catalytic activity and regulatory properties. J Mol Biol 400:815–827. doi:10.1016/j.jmb.2010.05.055

    Article  CAS  PubMed  Google Scholar 

  • Haima P, Bron S, Venema G (1987) The effect of restriction on shotgun cloning and plasmid stability in Bacillus subtilis Marburg. Mol Gen Genet 209:335–342

    Article  CAS  PubMed  Google Scholar 

  • Heggeset TM, Krog A, Balzer S, Wentzel A, Ellingsen TE, Brautaset T (2012) Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl Environ Microbiol 78:5170–5181. doi:10.1128/AEM. 00703-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hektor HJ, Kloosterman H, Dijkhuizen L (2002) Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. J Biol Chem 277:46966–46973. doi:10.1074/jbc.M207547200

    Article  CAS  PubMed  Google Scholar 

  • Irla M, Neshat A, Winkler A, Albersmeier A, Heggeset TM, Brautaset T, Kalinowski J, Wendisch VF, Ruckert C (2014) Complete genome sequence of Bacillus methanolicus MGA3, a thermotolerant amino acid producing methylotroph. J Biotechnol 188C:110–111. doi:10.1016/j.jbiotec.2014.08.013

    Article  Google Scholar 

  • Jakobsen ØM, Benichou A, Flickinger MC, Valla S, Ellingsen TE, Brautaset T (2006) Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus. J Bacteriol 188:3063–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsen ØM, Brautaset T, Degnes KF, Heggeset TM, Balzer S, Flickinger MC, Valla S, Ellingsen TE (2009) Overexpression of wild-type aspartokinase increases L-lysine production in the thermotolerant methylotrophic bacterium Bacillus methanolicus. Appl Environ Microbiol 75:652–661

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Hirasawa T, Sato Y, Nagahisa K, Furusawa C, Shimizu H (2009) Effect of odhA overexpression and odhA antisense RNA expression on Tween-40-triggered glutamate production by Corynebacterium glutamicum. Appl Microbiol Biotechnol 81:1097–1106. doi:10.1007/s00253-008-1743-4

    Article  CAS  PubMed  Google Scholar 

  • Komives CF, Cheung LY, Pluschkell SB, Flickinger MC (2005) Growth of Bacillus methanolicus in seawater-based media. J Ind Microbiol Biotechnol 32:61–66

    Article  CAS  PubMed  Google Scholar 

  • Kondo H, Kazuta Y, Saito A, Fuji K (1997) Cloning and nucleotide sequence of Bacillus stearothermophilus pyruvate carboxylase. Gene 191:47–50

    Article  CAS  PubMed  Google Scholar 

  • Kovacs AT, van Hartskamp M, Kuipers OP, van Kranenburg R (2010) Genetic tool development for a new host for biotechnology, the thermotolerant bacterium Bacillus coagulans. Appl Environ Microbiol 76:4085–4088. doi:10.1128/AEM. 03060-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krog A, Heggeset TM, Ellingsen TE, Brautaset T (2013a) Functional characterization of key enzymes involved in L-glutamate synthesis and degradation in the thermotolerant and methylotrophic bacterium Bacillus methanolicus. Appl Environ Microbiol 79:5321–5328. doi:10.1128/AEM. 01382-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krog A, Heggeset TM, Muller JE, Kupper CE, Schneider O, Vorholt JA, Ellingsen TE, Brautaset T (2013b) Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS One 8:e59188. doi:10.1371/journal.pone.0059188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markert B, Stolzenberger J, Brautaset T, Wendisch VF (2014) Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiol 14:7. doi:10.1186/1471-2180-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills DA, Flickinger MC (1993) Cloning and sequence analysis of the meso-diaminopimelate decarboxylase gene from Bacillus methanolicus MGA3 and comparison to other decarboxylase genes. Appl Environ Microbiol 59:2927–2937

    CAS  PubMed  PubMed Central  Google Scholar 

  • Müller JE, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA (2014) Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3. Proteomics 14:725–737. doi:10.1002/pmic.201300515

    Article  PubMed  Google Scholar 

  • Nærdal I, Netzer R, Ellingsen TE, Brautaset T (2011) Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus. Appl Environ Microbiol 77:6020–6026. doi:10.1128/AEM. 05093-11

    Article  PubMed  PubMed Central  Google Scholar 

  • Nærdal I, Pfeifenschneider J, Brautaset T, Wendisch VF (2014) Methanol-based cadaverine production by genetically engineered Bacillus methanolicus strains. submitted

  • Nguyen HD, Nguyen QA, Ferreira RC, Ferreira LC, Tran LT, Schumann W (2005) Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 54:241–248. doi:10.1016/j.plasmid.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  • Niebisch A, Kabus A, Schultz C, Weil B, Bott M (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J Biol Chem 281:12300–12307. doi:10.1074/jbc.M512515200

    Article  CAS  PubMed  Google Scholar 

  • Nilasari D, Dover N, Rech S, Komives C (2012) Expression of recombinant green fluorescent protein in Bacillus methanolicus. Biotechnol Prog 28:662–668. doi:10.1002/btpr.1522

    Article  CAS  PubMed  Google Scholar 

  • Ochsner AM, Muller JE, Mora CA, Vorholt JA (2014a) In vitro activation of NAD-dependent alcohol dehydrogenases by Nudix hydrolases is more widespread than assumed. FEBS Lett 588:2993–2999. doi:10.1016/j.febslet.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  • Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA (2014b) Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl Microbiol Biotechnol (In Press)

  • Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H, Ochiai K, Ikeda M (2002) A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant. Appl Microbiol Biotechnol 58:217–223

    Article  CAS  PubMed  Google Scholar 

  • Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    CAS  PubMed  Google Scholar 

  • Phan TT, Schumann W (2009) Transcriptional analysis of the lysine-responsive and riboswitch-regulated lysC gene of Bacillus subtilis. Curr Microbiol 59:463–468. doi:10.1007/s00284-009-9461-4

    Article  CAS  PubMed  Google Scholar 

  • Pluschkell SB, Flickinger MC (2002) Dissimilation of [13C]methanol by continuous cultures of Bacillus methanolicus MGA3 at 50 °C studied by 13C NMR and isotope-ratio mass spectrometry. Microbiology 148:3223–3233

  • Radmacher E, Eggeling L (2007) The three tricarboxylate synthase activities of Corynebacterium glutamicum and increase of L-lysine synthesis. Appl Microbiol Biotechnol 76:587–595. doi:10.1007/s00253-007-1105-7

    Article  CAS  PubMed  Google Scholar 

  • Roten CA, Brandt C, Karamata D (1991) Genes involved in meso-diaminopimelate synthesis in Bacillus subtilis: identification of the gene encoding aspartokinase I. J Gen Microbiol 137:951–962

    Article  CAS  PubMed  Google Scholar 

  • Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794. doi:10.1016/j.femsre.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  • Schendel FJ, Flickinger MC (1992) Cloning and nucleotide sequence of the gene coding for aspartokinase II from a thermophilic methylotrophic Bacillus sp. Appl Environ Microbiol 58:2806–2814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schendel FJ, Bremmon CE, Flickinger MC, Guettler M, Hanson RS (1990) L-lysine production at 50 °C by mutants of a newly isolated and characterized methylotrophic Bacillus sp. Appl Environ Microbiol 56:963–970

  • Schrader J, Schilling M, Holtmann D, Sell D, Filho MV, Marx A, Vorholt JA (2009) Methanol-based industrial biotechnology: current status and future perspectives of methylotrophic bacteria. Trends Biotechnol 27:107–115. doi:10.1016/j.tibtech.2008.10.009

    Article  CAS  PubMed  Google Scholar 

  • Schultz C, Niebisch A, Gebel L, Bott M (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol 76:691–700. doi:10.1007/s00253-007-0933-9

    Article  CAS  PubMed  Google Scholar 

  • Stolzenberger J, Lindner SN, Persicke M, Brautaset T, Wendisch VF (2013a) Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. J Bacteriol 195:5112–5122. doi:10.1128/JB.00672-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolzenberger J, Lindner SN, Wendisch VF (2013b) The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. Microbiology 159:1770–1781. doi:10.1099/mic. 0.067314-0

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum SR, Wang DIC (1975) Single-cell protein. MIT Press, Cambridge

    Google Scholar 

  • Tesch M, de Graaf AA, Sahm H (1999) In vivo fluxes in the ammonium-assimilatory pathways in Corynebacterium glutamicum studied by 15 N nuclear magnetic resonance. Appl Environ Microbiol 65:1099–1109

  • Vonck J, Arfman N, De Vries GE, Van Beeumen J, Van Bruggen EF, Dijkhuizen L (1991) Electron microscopic analysis and biochemical characterization of a novel methanol dehydrogenase from the thermotolerant Bacillus sp. C1. J Biol Chem 266:3949–3954

    CAS  PubMed  Google Scholar 

  • Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178:239–249

    Article  CAS  PubMed  Google Scholar 

  • Wendisch VF (2014) Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development. Curr Opin Biotechnol 30C:51–58. doi:10.1016/j.copbio.2014.05.004

    Article  Google Scholar 

  • Yao W, Deng X, Zhong H, Liu M, Zheng P, Sun Z, Zhang Y (2009) Double deletion of dtsR1 and pyc induce efficient L: -glutamate overproduction in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 36:911–921. doi:10.1007/s10295-009-0569-0

    Article  CAS  PubMed  Google Scholar 

  • Yasueda H, Kawahara Y, Sugimoto S (1999) Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 181:7154–7160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yurimoto H, Hirai R, Matsuno N, Yasueda H, Kato N, Sakai Y (2005) HxlR, a member of the DUF24 protein family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hxlAB operon in Bacillus subtilis. Mol Microbiol 57:511–519. doi:10.1111/j.1365-2958.2005.04702.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work related to methylotrophy in the authors’ laboratories is supported by FP7 project Promyse and the Swiss SystemsX.ch, Norwegian RCN and the German initiatives within the framework of the ERA-Net ERASysAPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trygve Brautaset.

Additional information

Jonas E. N. Müller and Tonje M. B. Heggeset contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, J.E.N., Heggeset, T.M.B., Wendisch, V.F. et al. Methylotrophy in the thermophilic Bacillus methanolicus, basic insights and application for commodity production from methanol. Appl Microbiol Biotechnol 99, 535–551 (2015). https://doi.org/10.1007/s00253-014-6224-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6224-3

Keywords

Navigation