Skip to main content
Log in

Using cassava distiller’s dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrate removal from synthetic and real groundwater was investigated by using cassava distiller’s dried grains (CDDG), which served as sole carbon source as well as the only microbe seed. It was found that remarkably higher total nitrogen removal efficiency (96.8±0.6 %) could be reached; the accumulation of nitrite and the releases of organic compounds, meanwhile, were insignificant in the denitrification process. Scanning electron microscope (SEM) analysis showed that CDDG were degraded during the denitrification process. Further investigation showed that CDDG were anaerobically hydrolyzed and acidified to butyric acid, acetic acid, and carbohydrate, which could be utilized directly as the reducing equivalent providers for denitrification by the microorganisms separated from CDDG. Microbial community analysis revealed that the fungi and bacteria present in the original CDDG functioned as the denitrifiers, which mainly consisted of Aspergillus (69.8 %) and Rhizomucor (15.9 %) in the fungi community and Burkholderia (20.6 %) and Rhizobium (15.9 %) in the bacteria community, respectively. Finally, the use of CDDG as both carbon and microbial sources for real groundwater denitrification was testified to be feasible and safe with a total nitrogen removal efficiency of around 100 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agler MT, Werner JJ, Iten LB, Dekker A, Cotta MA, Dien BS, Angenent LT (2012) Shaping reactor microbiomes to produce the fuel precursor n-butyrate from pretreated cellulosic hydrolysates. Environ Sci Technol 46:10229–10238

    CAS  PubMed  Google Scholar 

  • Armstrong SK, Gross R (2007) Primary metabolism and physiology of Bordetella species. Bordetella: molecular microbiology. In: Locht C (ed). Horizon bioscience, Norfolk, pp: 165–190.

  • Berks BC, Ferguson SJ, Moir JWB, Richardson DJ (1995) Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions. BBA-Bioenergetics 1232:97–173

    Article  PubMed  Google Scholar 

  • Burow KR, Nolan BT, Rupert MG, Dubrovsky NM (2010) Nitrate in groundwater of the United States, 1991–2003. Environ Sci Technol 44:4988–4997

    Article  CAS  PubMed  Google Scholar 

  • Cathrine SJ, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109

    Article  PubMed  Google Scholar 

  • Chen J, Strous M (2013) Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. BBA-Bioenergetics 1827:136–144

    Article  CAS  PubMed  Google Scholar 

  • Chu L, Wang J (2011) Nitrogen removal using biodegradable polymers as carbon source and biofilm carriers in a moving bed biofilm reactor. Chem Eng J 170:220–225

    Article  CAS  Google Scholar 

  • Daniel RM, Limmer A, Steele K, Smith I (1982) Anaerobic growth, nitrate reduction and denitrification in 46 Rhizobium strains. J Gen Microbiol 128:1811–1815

    CAS  Google Scholar 

  • Dhamole PB, Nair RR, D’Souza SF, Lele S (2007) Denitrification of high strength nitrate waste. Bioresour Technol 98:247–252

    Article  CAS  PubMed  Google Scholar 

  • Eilersen AM, Henze M, Kløft L (1995) Effect of volatile fatty acids and trimethylamine on denitrification in activated sludge. Water Res 29:1259–1266

    Article  CAS  Google Scholar 

  • Ergas SJ, Rheinheimer DE (2004) Drinking water denitrification using a membrane bioreactor. Water Res 38:3225–3232

    Article  CAS  PubMed  Google Scholar 

  • García-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martínez-Molina E, Mateos PF, Velázquez E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57:844–848

    Article  PubMed  Google Scholar 

  • Hagman M, Nielsen JL, Nielsen PH, Jansen JC (2008) Mixed carbon sources for nitrate reduction in activated sludge-identification of bacteria and process activity studies. Water Res 42:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Jirout J, Simek M, Elhottova D (2013) Fungal contribution to nitrous oxide emissions from cattle impacted soils. Chemosphere 90:565–572

    Article  CAS  PubMed  Google Scholar 

  • Kesserü P, Kiss I, Bihari Z, Polyák B (2002) The effects of NaCl and some heavy metals on the denitrification activity of Ochrobactrum anthropi. J Basic Microbiol 42:268–276

    Article  PubMed  Google Scholar 

  • Kim MK, Jung H-Y (2007) Chitinophaga terrae sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:1721–1724

    Article  PubMed  Google Scholar 

  • Lim Y, Lee S, Kim SB, Yong H, Yeon S, Park Y, Jeong D, Park J (2005) Diversity of denitrifying bacteria isolated from Daejeon sewage treatment plant. J Microbiol 43:383–390

    CAS  PubMed  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  PubMed  Google Scholar 

  • Liu SJ, Zhao ZY, Li J, Wang J, Qi Y (2013) An anaerobic two-layer permeable reactive biobarrier for the remediation of nitrate-contaminated groundwater. Water Res 47:5977–5985

    Article  CAS  PubMed  Google Scholar 

  • Millati R, Edebo L, Taherzadeh MJ (2005) Performance of Rhizopus, Rhizomucor, and Mucor in ethanol production from glucose, xylose, and wood hydrolyzates. Enzym Microb Technol 36:294–300

    Article  CAS  Google Scholar 

  • Mohana S, Shah A, Divecha J, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour Technol 99:7553–7564

    Article  CAS  PubMed  Google Scholar 

  • Mosquera-Corral A, Sanchez M, Campos J, Méndez R, Lema J (2001) Simultaneous methanogenesis and denitrification of pretreated effluents from a fish canning industry. Water Res 35:411–418

    Article  CAS  PubMed  Google Scholar 

  • Mothapo NV, Chen H, Cubeta MA, Shi W (2013) Nitrous oxide producing activity of diverse fungi from distinct agroecosystems. Soil Biol Biochem 66:94–101

    Article  CAS  Google Scholar 

  • Mountfort DO, Rhodes LL (1991) Anaerobic growth and fermentation characteristics of Paecilomyces lilacinus isolated from mullet gut. Appl Environ Microbiol 57:1963–1968

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oehmen A, Keller-Lehmann B, Zeng RJ, Yuan Z, Keller J (2005) Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. J Chromatogr A 1070:131–136

    Article  CAS  PubMed  Google Scholar 

  • Papagianni M (2007) Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv 25:244–263

    Article  CAS  PubMed  Google Scholar 

  • Polizeli M, Rizzatti A, Monti R, Terenzi H, Jorge J, Amorim D (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Rose R, Rose CL, Omi SK, Forry KR, Durall DM, Bigg WL (1991) Starch determination by perchloric acid vs enzymes: evaluating the accuracy and precision of six colorimetric methods. J Agric Food Chem 39:2–11

    Article  CAS  Google Scholar 

  • Sage M, Daufin G, Gesan-Guiziou G (2006) Denitrification potential and rates of complex carbon source from dairy effluents in activated sludge system. Water Res 40:2747–2755

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Wang J (2011) Biological denitrification using cross-linked starch/PCL blends as solid carbon source and biofilm carrier. Bioresour Technol 102:8835–8838

    Article  CAS  PubMed  Google Scholar 

  • Soares MIM, Abeliovich A (1998) Wheat straw as substrate for water denitrification. Water Res 32:3790–3794

    Article  CAS  Google Scholar 

  • Sun HY, Zhao PJ, Ge XY, Xia YJ, Hao ZK, Liu JW, Peng M (2010) Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol 160:988–1003

    Article  CAS  PubMed  Google Scholar 

  • Van Soest PV, Robertson J, Lewis B (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Volokita M, Belkin S, Abeliovich A, Soares MIM (1996) Biological denitrification of drinking water using newspaper. Water Res 30:965–971

    Article  CAS  Google Scholar 

  • Wang YY, Geng JJ, Ren ZJ, He WT, Xing MY, Wu M, Chen SW (2011) Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production. Bioresour Technol 102:5674–5684

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xue J, Zhou XD, You M, Du Q, Yang X, He JZ, Zou J, Cheng L, Li MY, Li YQ, Zhu YP, Li JY, Shi WY, Xu X (2014) Oral microbiota distinguishes acute lymphoblastic leukemia pediatric hosts from healthy populations. Plos One 9:e102116

    Article  PubMed Central  PubMed  Google Scholar 

  • Warneke S, Schipper LA, Matiasek MG, Scow KM, Cameron S, Bruesewitz DA, McDonald IR (2011) Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds. Water Res 45:5463–5475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu W, Yang F, Yang L (2012) Biological denitrification with a novel biodegradable polymer as carbon source and biofilm carrier. Bioresour Technol 118:136–140

    Article  CAS  PubMed  Google Scholar 

  • Yu HG, Wang QY, Wang ZW, Sahinkaya E, Li YL, Ma JX, Wu ZC (2014) Start-up of an anaerobic dynamic membrane digester for waste activated sludge digestion: temporal variations in microbial communities. Plos One 9:e93710

    Article  PubMed Central  PubMed  Google Scholar 

  • Yuan H, Chen Y, Zhang H, Jiang S, Zhou Q, Gu G (2006) Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ Sci Technol 40:2025–2029

    Article  CAS  PubMed  Google Scholar 

  • Zablotowicz R, Eskew D, Focht D (1978) Denitrification in Rhizobium. Can J Microbiol 24:757–760

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Yu LY, Wang D, Liu HY, Sun CH, Jiang W, Zhang YQ, Li WJ (2008) Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 58:2070–2074

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Chen YG, Wu R (2011) Long-term effects of titanium dioxide nanoparticles on nitrogen and phosphorus removal from wastewater and bacterial community shift in activated sludge. Environ Sci Technol 45:7284–7290

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Hi-Tech Research and Development Program (2011AA060903) and National Natural Science Foundation of China (51178324, 51278354, and 41301558).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiong Zheng or Yinguang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, R., Zheng, X., Chen, Y. et al. Using cassava distiller’s dried grains as carbon and microbe sources to enhance denitrification of nitrate-contaminated groundwater. Appl Microbiol Biotechnol 99, 2839–2847 (2015). https://doi.org/10.1007/s00253-014-6155-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6155-z

Keywords

Navigation