Skip to main content
Log in

Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Here, shotgun metagenomic sequencing was conducted to reveal the hydrogen-oxidizing autotrophic-denitrifying metabolism in an enriched Thauera-dominated consortium. A draft genome named Thauera R4 of over 90 % completeness (3.8 Mb) was retrieved mainly by a coverage-defined binning method from 3.5 Gb paired-end Illumina reads. We identified 1,263 genes (accounting for 33 % of total genes in the finished genome of Thauera aminoaromatica MZ1T) with average nucleotide identity of 87.6 % shared between Thauera R4 and T. aminoaromatica MZ1T. Although Thauera R4 and T. aminoaromatica shared quite similar nitrogen metabolism and a high nucleotide similarity (98.8 %) in their 16S ribosomal RNA genes, they showed different functional potentials in several important environmentally relevant processes. Unlike T. aminoaromatica MZ1T, Thauera R4 carries an operon of [NiFe]-hydrogenase (EC 1.12.99.6) catalyzing molecular hydrogen oxidation in nitrate-rich solution. Moreover, Thauera R4 is a mixtrophic bacterium possessing key enzymes for autotrophic CO2-fixation and heterotrophic acetate assimilation metabolism. This Thauera R4 bin provides another genetic reference to better understand the niches of Thauera and demonstrates a model pipeline to reveal functional profiles and reconstruct novel and dominant genomes from a simplified mixed culture in environmental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL (2012) A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J 6(6):1094–1106. doi:10.1038/ismej.2011.176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31(6):533–538. doi:10.1038/nbt.2579

    Article  CAS  PubMed  Google Scholar 

  • Anders HJ, Kaetzke A, Kampfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying Pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45(2):327–333

    Article  CAS  PubMed  Google Scholar 

  • Byrne-Bailey KG, Coates JD (2012) Complete genome sequence of the anaerobic perchlorate-reducing bacterium Azospira suillum strain PS. J Bacteriol 194(10):2767–2768. doi:10.1128/JB.00124-12

    Article  PubMed Central  PubMed  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinforma 10:421. doi:10.1186/1471-2105-10-421

    Article  Google Scholar 

  • Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M, Paley S, Rhee SY, Shearer AG, Tissier C, Walk TC, Zhang P, Karp PD (2007) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 36(Database):D623–D631. doi:10.1093/nar/gkm900

    Article  PubMed Central  PubMed  Google Scholar 

  • D'Haeseleer P, Gladden JM, Allgaier M, Chain PSG, Tringe SG, Malfatti SA, Aldrich JT, Nicora CD, Robinson EW, Paša-Tolić L, Hugenholtz P, Simmons BA, Singer SW (2013) Proteogenomic analysis of a thermophilic bacterial consortium adapted to deconstruct switchgrass. PLoS ONE 8(7):e68465. doi:10.1371/journal.pone.0068465

    Article  PubMed Central  PubMed  Google Scholar 

  • Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DH, Halpern AL, Lasken RS, Nealson K, Friedman R, Venter JC (2012) Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6(6):1186–1199. doi:10.1038/ismej.2011.189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39(Web Server issue):W29–W37. doi:10.1093/nar/gkr367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flowers JJ, He S, Yilmaz S, Noguera DR, McMahon KD (2009) Denitrification capabilities of two biological phosphorus removal sludges dominated by different "Candidatus Accumulibacter" clades. Environ Microbiol Rep 1(6):583–588. doi:10.1111/j.1758-2229.2009.00090.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flowers JJ, He S, Malfatti S, del Rio TG, Tringe SG, Hugenholtz P, McMahon KD (2013) Comparative genomics of two ‘Candidatus Accumulibacter’ clades performing biological phosphorus removal. ISME J 7(12):2301–2314. doi:10.1038/ismej.2013.117

    Article  CAS  PubMed  Google Scholar 

  • Gallus C, Gorny N, Ludwig W, Schink B (1997) Anaerobic degradation of α-resorcylate by a nitrate-reducing bacterium, Thauera aromatica strain AR-1. Syst Appl Microbiol 20(4):540–544. doi:10.1016/s0723-2020(97)80023-9

    Article  CAS  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. doi:10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331(6016):463–467. doi:10.1126/science.1200387

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21(9):1552–1560. doi:10.1101/gr.120618.111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ishii S, Suzuki S, Norden-Krichmar TM, Tenney A, Chain PS, Scholz MB, Nealson KH, Bretschger O (2013) A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nat Commun 4:1601. doi:10.1038/ncomms2615

    Article  PubMed  Google Scholar 

  • Jiang K, Sanseverino J, Chauhan A, Lucas S, Copeland A, Lapidus A, Del Rio TG, Dalin E, Tice H, Bruce D, Goodwin L, Pitluck S, Sims D, Brettin T, Detter JC, Han C, Chang YJ, Larimer F, Land M, Hauser L, Kyrpides NC, Mikhailova N, Moser S, Jegier P, Close D, Debruyn JM, Wang Y, Layton AC, Allen MS, Sayler GS (2012) Complete genome sequence of Thauera aminoaromatica strain MZ1T. Stand Genomic Sci 6(3):325–335. doi:10.4056/sigs.2696029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M (2006) From genomics to chemical genomics: new development in KEGG. Nucleic Acids Res 34:D354–D357. doi:10.1093/nar/gkj102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Böhm M, Friedrich F, Hurek T, Krause L, Linke B, McHardy AC, Sarkar A, Schneiker S, Syed AA, Thauer R, Vorhölter FJ, Weidner S, Pühler A, Reinhold-Hurek B, Kaiser O, Goesmann A (2007) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol. doi:10.1038/nbt1243

    PubMed  Google Scholar 

  • Liu B, Frostegård Å, Shapleigh JP (2013) Draft genome sequences of five strains in the genus Thauera. Genome Announc 1(1):e00052–e00012. doi:10.1128/genomeA.00052-12

    PubMed Central  PubMed  Google Scholar 

  • Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, Rubin EM, Jansson JK (2011) Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480(7377):368–371. doi:10.1038/nature10576

    Article  CAS  PubMed  Google Scholar 

  • Macy JM, Rech S, Auling G, Dorsch M, Stackebrandt E, Sly LI (1993) Thauera selenatis gen. nov., sp. nov., a member of the beta subclass of Proteobacteria with a novel type of anaerobic respiration. Int J Syst Bacteriol 43(1):135–142

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Xia Y, Zhang T (2013) Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing. Bioresour Technol 128:703–710. doi:10.1016/j.biortech.2012.10.106

    Article  CAS  PubMed  Google Scholar 

  • Markowitz VM, Chen IA, Chu K, Szeto E, Palaniappan K, Grechkin Y, Ratner A, Jacob B, Pati A, Huntemann M, Liolios K, Pagani I, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC (2012) IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 40:D123–D129. doi:10.1093/nar/gkr975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martín HG, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E, Dalin E, Putnam NH, Shapiro HJ, Pangilinan JL, Rigoutsos I, Kyrpides NC, Blackall LL, McMahon KD, Hugenholtz P (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24(10):1263–1269. doi:10.1038/nbt1247

    Article  Google Scholar 

  • McIlroy SJ, Albertsen M, Andresen EK, Saunders AM, Kristiansen R, Stokholm-Bjerregaard M, Nielsen KL, Nielsen PH (2013) 'Candidatus Competibacter'-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME J 8:613–624. doi:10.1038/ismej.2013.162

    Article  PubMed  Google Scholar 

  • Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodrguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma 9:386. doi:10.1186/1471-2105-9-386

    Article  CAS  Google Scholar 

  • Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40(20):e155. doi:10.1093/nar/gks678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishizawa T, Tago K, Oshima K, Hattori M, Ishii S, Otsuka S, Senoo K (2012) Complete genome sequence of the denitrifying and N2O-reducing bacterium Azoarcus sp. strain KH32C. J Bacteriol 194(5):1255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428. doi:10.1093/bioinformatics/bts174

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Kube M, Heider J, Beck A, Heitmann K, Widdel F, Reinhardt R (2005) The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1. Arch Microbiol 183:27–36. doi:10.1007/s00203-004-0742-9

    Article  CAS  PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106(45):19126–19131. doi:10.1073/pnas.0906412106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salinero KK, Keller K, Feil WS, Feil H, Trong S, Bartolo D, Lapidus A (2009) Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics 10:351

    Article  PubMed Central  PubMed  Google Scholar 

  • Scholten E, Lukow T, Auling G, Kroppenstedt RM, Rainey FA, Diekmann H (1999) Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. Int J Syst Bacteriol 49:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Schomburg I, Chang A, Placzek S, Sohngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 41(Database issue):D764–D772. doi:10.1093/nar/gks1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schroder I, Rech S, Krafft T, Macy JM (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272(38):23765–23768. doi:10.1074/jbc.272.38.23765

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Brckwalter SP, Repert DA, Miller DN (2005) Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water. Water Res 39(10):2014–2023

    Article  CAS  PubMed  Google Scholar 

  • Sunger N, Bose P (2009) Autotrophic denitrification using hydrogen generated from metallic iron corrosion. Bioresour Technol 100(18):4077–4082. doi:10.1016/j.biortech.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  • Szekeres S, Kiss I, Kalman M, Soares MIM (2002) Microbial population in a hydrogen-dependent denitrification reactor. Water Res 36:4088–4094

    Article  CAS  PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  PubMed  Google Scholar 

  • Vasiliadou IA, Siozios S, Papadas IT, Bourtzis K, Pavlou S, Vayenas DV (2006) Kinetics of pure cultures of hydrogen-oxidizing denitrifying bacteria and modeling of the interactions among them in mixed cultures. Biotechnol Bioeng 95(3):513–525. doi:10.1002/bit.21031

    Article  CAS  PubMed  Google Scholar 

  • Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Leung HC, Yiu SM, Chin FY (2012) MetaCluster 5.0: a two-round binning approach for metagenomic data for low-abundance species in a noisy sample. Bioinformatics 28(18):i356–i362. doi:10.1093/bioinformatics/bts397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang C, Zhang W, Liu R, Li Q, Li B, Wang S, Song C, Qiao C, Mulchandani A (2011) Phylogenetic diversity and metabolic potential of activated sludge microbial communities in full-scale wastewater treatment plants. Environ Sci Technol 45(17):7408–7415. doi:10.1021/es2010545

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS ONE 7(5):1–13. doi:10.1371/journal.pone.0038183.g001

    Google Scholar 

  • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. doi:10.1101/gr.074492.107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38(12):e132. doi:10.1093/nar/gkq275

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This research was financially supported by Hong Kong General Research Fund (7190/12E). Yanping Mao and Yu Xia wish to thank The University of Hong Kong for the postgraduate scholarships. Zhiping Wang wishes to thank Hong Kong Scholar Program for financial support (XJ2012030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Xia, Y., Wang, Z. et al. Reconstructing a Thauera genome from a hydrogenotrophic-denitrifying consortium using metagenomic sequence data. Appl Microbiol Biotechnol 98, 6885–6895 (2014). https://doi.org/10.1007/s00253-014-5756-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5756-x

Keywords

Navigation