Skip to main content
Log in

Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Gluconic acid secretion mediated by the direct oxidation of glucose by pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase (GDH) is responsible for mineral phosphate solubilization in Gram-negative bacteria. Herbaspirillum seropedicae Z67 (ATCC 35892) genome encodes GDH apoprotein but lacks genes for the biosynthesis of its cofactor PQQ. In this study, pqqE of Erwinia herbicola (in plasmid pJNK1) and pqq gene clusters of Pseudomonas fluorescens B16 (pOK53) and Acinetobacter calcoaceticus (pSS2) were over-expressed in H. seropedicae Z67. Transformants Hs (pSS2) and Hs (pOK53) secreted micromolar levels of PQQ and attained high GDH activity leading to secretion of 33.46 mM gluconic acid when grown on 50 mM glucose while Hs (pJNK1) was ineffective. Hs (pJNK1) failed to solubilize rock phosphate, while Hs (pSS2) and Hs (pOK53) liberated 125.47 μM and 168.07 μM P, respectively, in minimal medium containing 50 mM glucose under aerobic conditions. Moreover, under N-free minimal medium, Hs (pSS2) and Hs (pOK53) not only released significant P but also showed enhanced growth, biofilm formation, and exopolysaccharide (EPS) secretion. However, indole acetic acid (IAA) production was suppressed. Thus, the addition of the pqq gene cluster, but not pqqE alone, is sufficient for engineering phosphate solubilization in H. seropedicae Z67 without compromising growth under nitrogen-fixing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril A, Zurdo-Pineiro JL, Peis A, Rivas R, Velazquez E (2007) Solubilization of phosphate by a strain of Rhizobium leguminosarium bv trifolii isolated from Phaseolus vulgaris in EI Chaco Arido soil (Argentina). Dev Plant Soil Sci 102:135–138

    Google Scholar 

  • Ames BN (1966) Assay of inorganic phosphate, total phosphate, and phosphatases. Methods Enzymol 8:115–118

    Article  CAS  Google Scholar 

  • Archana G, Buch A, Naresh Kumar G (2012) Pivotal role of organic acid secretion by rhizobacteria in plant growth promotion. In: Satayanarayan T, Johri BN, Prakash AA (eds) Microorganisms in sustainable agriculture and biotechnology. Springer, Heidelberg, New York, pp 35–53

    Chapter  Google Scholar 

  • Babu-Khan S, Yeo TC, Martin WL, Duron MR, Rogers RD, Goldstein AH (1995) Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Appl Environ Microbiol 61:972–978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol 30:86–93

    Article  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–489

    Article  Google Scholar 

  • Baldotto LEB, Olivares FL, Bressan SR (2011) Structural interaction between gfp-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae ram10 and pineapple plantlets victoria. Braz J Microbiol 42:114–125

    Article  Google Scholar 

  • Boesten B, Priefer UB (2004) The C-terminal receiver domain of the Rhizobium leguminosarum bv. viciae FixL protein is required for free-living microaerobic induction of the fnrN promoter. Microbiology 150:3703–3713

    Article  CAS  PubMed  Google Scholar 

  • Buch AB, Archana G, Naresh Kumar G (2008) Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res Microbiol 159:635–642

    Article  CAS  PubMed  Google Scholar 

  • Buch AD, Archana G, Naresh Kumar G (2009) Enhance citric acid biosynthesis in Pseudomonas fluorescence ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. Microbiology 155:2620–2629

    Article  CAS  PubMed  Google Scholar 

  • Chabot R, Antoun H, Kloepper JW, Beauchamp CJ (1996) Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar. phaseoli. Appl Environ Microbiol 62:2767–2772

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi O, Kim J, Kim JG, Jeong Y, Moon JS, Park CS, Hwang I (2008) Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant Physiol 146:657–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chu C, Lu C, Lee C (2005) Effects of inorganic nutrients on the regrowth of heterotrophic bacteria in drinking water distribution systems. J Environ Manag 74:255–263

    Article  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • da Silva LG, Miguens FC, Olivares FL (2003) Herbaspirillum seropedicae and sugarcane endophytic interaction investigated by using high pressure freezing electron microscopy. Braz J Microbiol 34:69–71

    Article  Google Scholar 

  • Ditta G, Schmidhauser T, Yakobson E, Lu P, Liang XW, Finlay DR, Guiney D, Helinski DR (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13:149–153

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Calorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Elkoca E, Kantar F, Sahin F (2007) Influence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpea. J Plant Nutr 31:157–171

    Article  Google Scholar 

  • Fang W, Hu JY, Ong SL (2009) Influence of phosphorus on biofilm formation in model drinking water distribution systems. J Appl Microbiol 106:1328–1335

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Wenxi W, Baohua D, Jianhua W, Xianghua X, Weicai Z (2013) Multiple pqqA genes respond differently to environment and one contributes dominantly to pyrroloquinoline quinone synthesis. J Basic Microbiol 53:1–12

    Article  Google Scholar 

  • Gliese N, Khodaverdi V, Görisch H (2010) The PQQ biosynthetic operons and their transcriptional regulation in Pseudomonas aeruginosa. Arch Microbiol 192:1–14

    Article  CAS  PubMed  Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram-negative bacteria. Biol Agric Hort 12:185–193

    Article  Google Scholar 

  • Goldstein AH (2007) Future trends in research on microbial phosphate solubilization: one hundred years of insolubility. Dev Plant Soil Sci 102:91–96

    Google Scholar 

  • Goldstein AH, Liu ST (1987) Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Nat Biotechnol 5:72–74

    Article  CAS  Google Scholar 

  • Goodwin PM, Anthony C (1998) The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes. Adv Microb Physiol 40:1–80

    Article  CAS  PubMed  Google Scholar 

  • Goosen N, Horsman HP, Huinen RG, van de Putte P (1989) Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrrolo-quinoline-quinone nucleotide sequence and expression in Escherichia coli K-12. J Bacteriol 171:447–455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goosen N, Huinen RG, van de Putte P (1992) A 24-amino-acid polypeptide is essential for the biosynthesis of the coenzyme pyrrolo-quinoline-quinone. J Bacteriol 174:1426–1427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gull M, Hafeez FY, Saleem M, Malik KA (2004) Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture. Aust J Exp Agric 44:623–628

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ (1998) Effect of buffering on the phosphate-solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Hutson RA, Naresh Kumar G (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilisation by Enterobacter asburiae PSI3. FEMS Microbiol Lett 171:223–229

    Article  CAS  Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002a) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145

    Article  CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002b) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hölscher T, Görisch H (2006) Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J Bacteriol 188:7668–7676

    Article  PubMed Central  PubMed  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • James EK, Olivares FL, Baldani JI, Dobereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench. J Exp Bot 48:785–797

    Article  CAS  Google Scholar 

  • Khairnar NP, Misra HS, Apte SK (2003) Pyrroloquinoline–quinine synthesized in Escherichia coli by pyrroloquinoline–quinone synthase of Deinococcus radiodurans plays a role beyond mineral phosphate solubilisation. Biochem Biophys Res Commun 312:303–308

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi–current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1998) Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiol Lett 159:121–127

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Kim CH, Han SH, Kang BR, Cho SM, Lee MC, Kim YC (2006) Expression of pqq genes from Serratia marcescens W1 in Escherichia coli inhibits the growth of phytopathogenic fungi. Plant Pathol J 22:323–328

    Article  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Chandra R (2008) Influence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentil. World J Agric Sci 4:297–301

    Google Scholar 

  • Kumar R, Pandey S, Pandey A (2006) Plant roots and C sequestration. Curr Sci 91:885–890

    CAS  Google Scholar 

  • Kumar C, Yadav K, Archana G, Naresh Kumar G (2013) 2-Ketogluconic acid secretion by incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase (gad) operon in Enterobacter asburiae PSI3 improves mineral phosphate solubilization. Curr Microbiol 67:388–394

    Article  CAS  PubMed  Google Scholar 

  • Lee HI, Donati AJ, Hahn D, Tisa LS, Chang WS (2013) Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain CcI3 under nitrogen-fixing conditions. Appl Microbiol Biotechnol 97:10499–10509

    Article  CAS  PubMed  Google Scholar 

  • Lehtola MJ, Miettinen IT, Martikainen PJ (2002) Biofilm formation in drinking water affected by low concentration of phosphorus. Can J Microbiol 48:494–449

    Article  CAS  PubMed  Google Scholar 

  • Liu ST, Lee LY, Tai CY, Hung CH, Chang YS, Wolfram JH, Rogers R, Goldstein AH (1992) Cloning of an Erwinia herbicola gene necessary for gluconic acid production and enhanced mineral phosphate solubilization in Escherichia coli HB101: nucleotide sequence and probable involvement in biosynthesis of the coenzyme pyrroloquinoline quinone. J Bacteriol 174:5814–5819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Magnusson OT, Toyama H, Saeki M, Schwarzenbacher R, Klinman JP (2004) The structure of a biosynthetic intermediate of pyrroloquinoline quinone (PQQ) and elucidation of the final step of PQQ biosynthesis. J Am Chem Soc 126:5342–5343

    Article  CAS  PubMed  Google Scholar 

  • Mathur T, Singhal S, Khan S, Upadhyay UP, Fatma F, Rattan A (2006) Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 24:25–29

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Ameyama M (1982) d-glucose-dehydrogenase from Pseudomonas fluorescens, membrane bound. Methods Enzymol 89:149–154

    Article  CAS  PubMed  Google Scholar 

  • Matsushita K, Arents JC, Bader R, Yamada M, Adachi O, Postma PW (1997) Escherichia coli is unable to produce pyrroloquinoline quinone (PQQ). Microbiology 143:149–156

    Article  Google Scholar 

  • Meneses CHSG, Rouws LFM, Simões-Araújo JL, Vidal MS, Baldani JI (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol Plant Microbe Interact 24:1448–1458

    Article  CAS  PubMed  Google Scholar 

  • Meulenberg JJM, Sellink E, Loenen WAM, Riegman NH, Kleef MV, Postma PW (1990) Cloning of Klebsiella pneumoniae pqq genes and PQQ biosynthesis in Escherichia coli. FEMS Microbiol Lett 71:337–344

    Article  CAS  Google Scholar 

  • Meulenberg JJM, Sellink E, Riegman NH, Postma PW (1992) Nucleotide sequence and structure of the Klebsiella pneumonia pqq operon. Mol Gen Genet 232:284–294

    CAS  PubMed  Google Scholar 

  • Mohamed MN, Lawrence JR, Robarts RD (1998) Phosphorus limitation of heterotrophic biofilms from the Fraser River, British Columbia, and the effect of pulp mill effluent. Microb Ecol 36:121–130

    Article  CAS  PubMed  Google Scholar 

  • Monteiro RA, Schmidt MA, Baura VA, Balsanelli E, Wassem R, Yates MG, Randi MAF, Pedrosa FO, Souza EM (2008) Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol 31:932–937

    Article  Google Scholar 

  • Olivares FL, James EK, Baldani JI, Dobereiner J (1997) Infection of mottled stripe disease susceptible and resistant varieties of sugarcane by the endophytic diazotroph Herbaspirillum. New Phytol 35:723–737

    Article  Google Scholar 

  • Olivera M, Tejera N, Iribarne C, Ocaña A, Lluch C (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiol Plant 121:498–505

    Article  CAS  Google Scholar 

  • Pedrosa FO, Benelli EM, Yates MG, Wassem R, Monteiro RA, Klassen G, Steffens MBR, Souza EM, Chubatsu LS, Rigo LU (2001) Recent developments in the structural organisation and regulation of nitrogen fixation genes in Herbaspirillum seropedicae. J Biotechnol 91:189–195

    Article  CAS  PubMed  Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MHP, Grisard EC, Hungria M, Madeira HMF, Nodari RO, Osaku CA, Petzl-Erler ML, Terenzi H, Vieira LGE, Almeida MIM, Alves LR, Arantes OMN, Balsanelli E, Barcellos FG, Baura VA, Binde DR, Campo RJ, Chubatsu LS, Chueire LMO, Ciferri RR, Correa LC, da Conceicao Silva JL, Dabul ANG, Dambros BP, Faoro H, Favetti A, Friedermann G, Furlaneto MC, Gasques LS, Gimenes CCT, Gioppo NMR, Glienke-Blanco C, Godoy LP, Guerra MP, Karp S, Kava-Cordeiro V, Margarido VP, Mathioni SM, Menck-Soares MA, Murace NK, Nicolas MF, Oliveira CEC, Pagnan NAB, Pamphile JA, Patussi EV, Pereira LFP, Pereira-Ferrari L, Pinto FGS, Precoma C, Prioli AJ, Prioli SMAP, Raittz RT, Ramos HJO, Ribeiro EMSF, Rigo LU, Rocha CLMSC, Rocha SN, Santos K, Satori D, Silva AG, Simao RCG, Soares MAM, Souza EM, Steffens MBR, Steindel M, Tadra-Sfeir MZ, Takahashi EK, Torres RA, Valle JS, Vernal JI, Vilas-Boas LA, Watanabe MAE, Weiss VA, Yates MA, Souza EM (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genet 7:5

    Article  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodríguez-Barrueco C, Martínez-Molina E, Velázquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Peterson GL (1979) Review of the Folin phenol quantitation method of Lowry, Rosenberg, Farr and Randall. Anal Biochem 100:201–220

    Article  CAS  PubMed  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiol 17:362–370

    CAS  Google Scholar 

  • Puehringer S, Metlitzky M, Schwarzenbacher R (2008) The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem 9:8

    Article  PubMed Central  PubMed  Google Scholar 

  • Radwan TSD, Massena MKZ, Reis V (2004) Effect of inoculation of Azospirillum and Herbaspirillum in production of indole compounds in seedlings of maize and rice. Pesq Agropec Bras Brasilia Brazil 39:987–994

    Google Scholar 

  • Rajpurohit YS, Gopalakrishnan R, Misra HS (2008) Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans. J Bacteriol 190:3948–3954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21

    Article  Google Scholar 

  • Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47

    Article  CAS  PubMed  Google Scholar 

  • Roy SS, Mittra B, Sharma S, Das TK, Babu CR (2002) Detection of root mucilage using an anti-fucose antibody. Ann Bot 89:293–299

    Article  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway Involving glucose dehydrogenase. J Appl Microbiol 109:1–12

    CAS  PubMed  Google Scholar 

  • Schulze J, Temple G, Stephen JT, Beschow H, Vance PC (2006) Nitrogen fixation by white lupin under phosphorus deficiency. Ann Bot 98:731–740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma V, Kumar V, Archana G, Naresh Kumar G (2005) Substrate specificity of glucose dehydrogenase (GDH) of Enterobacter asburiae PSI3 and rock phosphate solubilization with GDH substrates as C sources. Can J Microbiol 51:477–482

    Article  CAS  PubMed  Google Scholar 

  • Shen YQ, Bonnot F, Imsand EM, RoseFigura JM, Sjölander K, Klinman JP (2012) Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51:265–2275

    Article  Google Scholar 

  • Sinha BK, Basu PS (1981) Indole-3-acetic acid and metabolism in root nodules of Pongamia pinnata L. Pierre. Biochem Physiol Pflanz 176:218–227

    Article  CAS  Google Scholar 

  • Staskawicz B, Dahlbeck D, Keen N, Napoli C (1987) Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea. J Bacteriol 169:5789–5794

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tapia J, Munoz J, Gonzalez F, Blazquez M, Malki M, Ballester A (2009) Extraction of extracellular polymeric substances from the acidophilic bacterium Acidiphilium 3.2 Sup (5). Water Sci Technol 59:1959–1967

    Article  CAS  PubMed  Google Scholar 

  • Unge A, Tombolini R, Davey ME, de Bruijn FJ, Jansson JK (1996) GFP as marker gene. Section 6.1.13. In: Akkermans ADL, Van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Academic Publishers, Dordrecht, The Netherlands, pp 1–16

    Google Scholar 

  • Valverde A, Burgos A, Fiscella T, Rivas R, Velazquez E, Rodríguez-Barrueco C, Cervantes E, Manuel C, Jose-Mariano I (2007) Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) and Mesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Dev Plant Soil Sci 102:43–50

    Google Scholar 

  • Velterop JS, Sellink E, Meulenberg JJ, David S, Bulder I, Postma PW (1995) Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol 177:5088–5098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vikram A, Algawadi AR, Krishnaraj PU, Mahesh KKS (2007) Transconjugation studies in Azospirillum sp. negative to mineral phosphate solubilization. World J Microbiol Biotechnol 23:1333–1337

    Article  CAS  Google Scholar 

  • Wecksler SR, Stoll S, Iavarone AT, Imsand EM, Tran H, Britt RD, Klinman JP (2010) Interaction of PqqE and PqqD in the pyrroloquinoline quinone (PQQ) biosynthetic pathway links PqqD to the radical SAM superfamily. Chem Commun (Camb) 46:7031–7033

    Article  CAS  Google Scholar 

  • Wielbo J, Skorupska A (2008) Influence of phosphate and ammonia on the growth, exopolysaccharide production and symbiosis of Rhizobium leguminosarum bv. trifolii TA1 with clover (Trifolium pratense). Acta Biol Hung 59:115–127

    Article  CAS  PubMed  Google Scholar 

  • Yang X-P, Zhong G-F, Lin J-P, Mao D-B, Wei D-Z (2010) Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. J Ind Microbiol Biotechnol 37:575–580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from University Grants Commission, New Delhi, India to GNK and a fellowship to JW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Naresh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagh, J., Shah, S., Bhandari, P. et al. Heterologous expression of pyrroloquinoline quinone (pqq) gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Appl Microbiol Biotechnol 98, 5117–5129 (2014). https://doi.org/10.1007/s00253-014-5610-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5610-1

Keywords

Navigation