Skip to main content
Log in

Directed evolution of nitrobenzene dioxygenase for the synthesis of the antioxidant hydroxytyrosol

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nitrobenzene dioxygenase (NBDO) is known to add both atoms of molecular oxygen to the aromatic ring of nitrobenzene to form catechol. It is assembled by four subunits of which the alpha subunit is responsible for catalysis. As an oxidizing enzyme, it has a potential use in the detoxification of industrial waste and the synthesis of pharmaceuticals and food ingredients; however, not much work has been done studying its structure-function correlations. We used several protein engineering approaches (neutral drift libraries, random libraries, two types of focused libraries, and family shuffling) to engineer NBDO for the production of the highly potent antioxidant, hydroxytyrosol (HTyr), from the substrate 3-nitrophenethyl alcohol (3NPA). We obtained a triple mutant, F222C/F251L/G253D, which is able to oxidize 3NPA 375-fold better than wild type with a very high regioselectivity. In total, we identified four positions which are important for acquisition of new specificities, of which only one is well-known and studied. Based on homology modeling, it is suggested that these mutations increase activity by vacating extra space within the active site for the larger substrate and also by hydrogen bonding to the substrate. The best variant had acquired a stabilizing mutation which was beneficial only in this mutant. Thus, we have achieved two goals, the first is the enzymatic production of HTyr, and the second is valuable information regarding the structure-function correlations of NBDO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allouche N, Sayadi S (2005) Synthesis of hydroxytyrosol, 2-hydroxyphenylacetic acid, and 3-hydroxyphenylacetic acid by differential conversion of tyrosol isomers using Serratia marcescens strain. J Agric Food Chem 53(16):6525–6530

    Article  CAS  PubMed  Google Scholar 

  • Allouche N, Fki I, Sayadi S (2003) Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters. J Agric Food Chem 52(2):267–273

    Article  Google Scholar 

  • Allouche N, Damak M, Ellouz R, Sayadi S (2004) Use of whole cells of Pseudomonas aeruginosa for synthesis of the antioxidant hydroxytyrosol via conversion of tyrosol. Appl Environ Microbiol 70(4):2105–2109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amitai G, Gupta RD, Tawfik DS (2007) Latent evolutionary potentials under the neutral mutational drift of an enzyme. HFSP J 1(1):67–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bloom JD, Labthavikul ST, Otey CR, Arnold FH (2006) Protein stability promotes evolvability. Proc Natl Acad Sci U S A 103(15):5869–5874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouallagui Z, Bouaziz M, Lassoued S, Engasser JM, Ghoul M, Sayadi S (2011) Hydroxytyrosol acyl esters: biosynthesis and activities. Appl Biochem Biotechnol 163(5):592–599

    Article  CAS  PubMed  Google Scholar 

  • Boyd DR, Sharma ND, Allen CC (2001) Aromatic dioxygenases: molecular biocatalysis and applications. Curr Opin Biotechnol 12(6):564–573

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brouk M, Fishman A (2009) Protein engineering of toluene monooxygenases for synthesis of hydroxytyrosol. Food Chem 116:114–121

    Article  CAS  Google Scholar 

  • Brouk M, Fishman A (2012) Improving process conditions of hydroxytyrosol synthesis by toluene-4-monooxygenase. J Mol Catal B Enzym 84:121–127

    Article  CAS  Google Scholar 

  • Brouk M, Nov Y, Fishman A (2010) Improving biocatalyst performance by integrating statistical methods into protein engineering. Appl Environ Microbiol 76(19):6397–6403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carredano E, Karlsson A, Kauppi B, Choudhury D, Parales RE, Parales JV, Lee K, Gibson DT, Eklund H, Ramaswamy S (2000) Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding. J Mol Biol 296(2):701–712

    Article  CAS  PubMed  Google Scholar 

  • Cicerale S, Lucas L, Keast R (2012) Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol 23(2):129–135

    Article  CAS  PubMed  Google Scholar 

  • Dalby PA (2011) Strategy and success for the directed evolution of enzymes. Curr Opin Struct Biol 21(4):473–480

    Article  CAS  PubMed  Google Scholar 

  • Dror A, Fishman A (2012) Engineering non-heme mono- and dioxygenases for biocatalysis. Comput Struct Biotechnol J 2(3):1–12

    Article  Google Scholar 

  • Espin JC, Soler-Rivas C, Cantos E, Tomas-Barberan FA, Wichers HJ (2001) Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst. J Agric Food Chem 49(3):1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Feingersch R, Shainsky J, Wood TK, Fishman A (2008) Protein engineering of toluene monooxygenases for synthesis of chiral sulfoxides. Appl Environ Microbiol 74(5):1555–1566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferraro DJ, Okerlund AL, Mowers JC, Ramaswamy S (2006) Structural basis for regioselectivity and stereoselectivity of product formation by naphthalene 1,2-dioxygenase. J Bacteriol 188(19):6986–6994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fishman A, Tao Y, Bentley WE, Wood TK (2004) Protein engineering of toluene 4-monooxygenase of Pseudomonas mendocina KR1 for synthesizing 4-nitrocatechol from nitrobenzene. Biotechnol Bioeng 87(6):779–790

    Article  CAS  PubMed  Google Scholar 

  • Friemann R, Ivkovic-Jensen MM, Lessner DJ, Yu CL, Gibson DT, Parales RE, Eklund H, Ramaswamy S (2005) Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase. J Mol Biol 348(5):1139–1151

    Article  CAS  PubMed  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9(11):803–816

    Article  CAS  PubMed  Google Scholar 

  • Grant C, Woodley JM, Baganz F (2011) Whole-cell bio-oxidation of n-dodecane using the alkane hydroxylase system of P. putida GPo1 expressed in E. coli. Enzyme Microb Technol 48(6–7):480–486

    Article  CAS  PubMed  Google Scholar 

  • Gupta RD, Tawfik DS (2008) Directed enzyme evolution via small and effective neutral drift libraries. Nat Methods 5(11):939–942

    Article  CAS  PubMed  Google Scholar 

  • Herman A, Tawfik DS (2007) Incorporating synthetic oligonucleotides via gene reassembly (ISOR): a versatile tool for generating targeted libraries. Protein Eng Des Sel 20(5):219–226

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Aravind L, Koonin EV (2001a) Common origin of four diverse families of large eukaryotic DNA viruses. J Virol 75(23):11720–11734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2001b) Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins 43(2):134–144

    Article  CAS  PubMed  Google Scholar 

  • Ju KS, Parales RE (2006) Control of substrate specificity by active-site residues in nitrobenzene dioxygenase. Appl Environ Microbiol 72(3):1817–1824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ju KS, Parales RE (2009) Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes. Microb Biotechnol 2(2):241–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ju KS, Parales RE (2011) Evolution of a new bacterial pathway for 4-nitrotoluene degradation. Mol Microbiol 82(2):1365–2958

    Article  Google Scholar 

  • Kauppi B, Lee K, Carredano E, Parales RE, Gibson DT, Eklund H, Ramaswamy S (1998) Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure 6(5):571–586

    Article  CAS  PubMed  Google Scholar 

  • Kovaleva EG, Lipscomb JD (2008) Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nat Chem Biol 4(3):186–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lessner DJ, Johnson GR, Parales RE, Spain JC, Gibson DT (2002) Molecular characterization and substrate specificity of nitrobenzene dioxygenase from Comamonas sp. strain JS765. Appl Environ Microbiol 68(2):634–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipscomb JD (2008) Mechanism of extradiol aromatic ring-cleaving dioxygenases. Curr Opin Struct Biol 18(6):644–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mahajabeen P, Chadha A (2011) One-pot synthesis of enantiomerically pure 1, 2-diols: asymmetric reduction of aromatic α-oxoaldehydes catalysed by Candida parapsilosis ATCC 7330. Tetrahedron Asymmetry 22(24):2156–2160

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishino SF, Spain JC (1995) Oxidative pathway for the biodegradation of nitrobenzene by Comamonas sp. strain JS765. Appl Environ Microbiol 61(6):2308–2313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parales RE (2003) The role of active-site residues in naphthalene dioxygenase. J Ind Microbiol Biotechnol 30(5):271–278

    Article  CAS  PubMed  Google Scholar 

  • Parales RE, Huang R, Yu CL, Parales JV, Lee FK, Lessner DJ, Ivkovic-Jensen MM, Liu W, Friemann R, Ramaswamy S, Gibson DT (2005) Purification, characterization, and crystallization of the components of the nitrobenzene and 2-nitrotoluene dioxygenase enzyme systems. Appl Environ Microbiol 71(7):3806–3814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pavelka A, Chovancova E, Damborsky J (2009) HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res 37(Web Server issue):376–383

    Article  Google Scholar 

  • Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9(11):1797–1804

    Article  CAS  PubMed  Google Scholar 

  • Resnick SM, Torok DS, Lee K, Brand JM, Gibson DT (1995) Regiospecific and stereoselective hydroxylation of 1-indanone and 2-indanone by naphthalene dioxygenase and toluene dioxygenase. Appl Environ Microbiol 61(2):847

    CAS  PubMed  Google Scholar 

  • Resnick SM, Lee K, Gibson DT (1996) Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J Ind Microbiol Biotechnol 17(5):438–457

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 2, 2nd edn. Cold Spring Harbor, NY

    Google Scholar 

  • Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS (2012) Engineering of l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metab Eng 14(6):603–610

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Bornscheuer UT (2005) High-throughput assays for lipases and esterases. Biomol Eng 22(1–3):51–56

    Article  CAS  PubMed  Google Scholar 

  • Seo J, Kang SI, Ryu JY, Lee YJ, Park KD, Kim M, Won D, Park HY, Ahn JH, Chong Y, Kanaly RA, Han J, Hur HG (2010) Location of flavone B-ring controls regioselectivity and stereoselectivity of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816–4. Appl Microbiol Biotechnol 86(5):1451–1462

    Article  CAS  PubMed  Google Scholar 

  • Shainsky J, Bernath-Levin K, Isaschar-Ovdat S, Glaser F, Fishman A (2013) Protein engineering of nirobenzene dioxygenase for enantioselective synthesis of chiral sulfoxides. Protein Eng Des Sel 26(5):335–345

    Article  CAS  PubMed  Google Scholar 

  • Stemmer WP (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91(22):10747–10751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vargas RR, Bechara EJH, Marzorati L, Wladislaw B (1999) Asymmetric sulfoxidation of a beta-carbonyl sulfide series by chloroperoxidase. Tetrahedron Asymmetry 10(16):3219–3227

    Article  CAS  Google Scholar 

  • Wackett LP (2002) Mechanism and applications of Rieske non-heme iron dioxygenases. Enzyme Microb Technol 31:577–587

    Article  CAS  Google Scholar 

  • Wei ZL, Lin GQ, Li ZY (2000) Microbial transformation of 2-hydroxy and 2-acetoxy ketones with Geotrichum sp. Bioorg Med Chem 8(5):1129–1137

    Article  CAS  PubMed  Google Scholar 

  • Yu CL, Parales RE, Gibson DT (2001) Multiple mutations at the active site of naphthalene dioxygenase affect regioselectivity and enantioselectivity. J Ind Microbiol Biotechnol 27(2):94–103

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Onit Alalouf and Dr. Yael Balazs for their help in NMR data analysis and Larissa Panz for her help with LC-MS data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet Fishman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 678 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernath-Levin, K., Shainsky, J., Sigawi, L. et al. Directed evolution of nitrobenzene dioxygenase for the synthesis of the antioxidant hydroxytyrosol. Appl Microbiol Biotechnol 98, 4975–4985 (2014). https://doi.org/10.1007/s00253-013-5505-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5505-6

Keywords

Navigation