Skip to main content
Log in

Functional expression and characterization of a chitinase from the marine archaeon Halobacterium salinarum CECT 395 in Escherichia coli

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The HschiA1 gene of the archaeon Halobacterium salinarum CECT 395 was cloned and overexpressed as an active protein of 66.5 kDa in Escherichia coli. The protein called HsChiA1p has a modular structure consisting of a glycosyl hydrolase family 18 catalytic region, as well as a N-terminal family 5 carbohydrate-binding module and a polycystic kidney domain. The purified recombinant chitinase displayed optimum catalytic activity at pH 7.3 and 40 °C and showed high stability over broad pH (6–8.5) and temperature (25–45 °C) ranges. Protein activity was stimulated by the metal ions Mg+2, K+, and Ca+2 and strongly inhibited by Mn+2. HsChiA1p is salt-dependent with its highest activity in the presence of 1.5 M of NaCl, but retains 20 % of its activity in the absence of salt. The recombinant enzyme hydrolysed p-NP-(GlcNAc)3, p-NP-(GlcNAc), crystalline chitin, and colloidal chitin. From its sequence features and biochemical properties, it can be identified as an exo-acting enzyme with potential interest regarding the biodegradation of chitin waste or its bioconversion into biologically active products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VGH (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aunpad R, Rice DW, Sedelnikova S, Panbangreb W (2007) Biochemical characterization of two forms of halo- and thermo-tolerant chitinase C of Salinivibrio costicola expressed in Escherichia coli. Ann Microbiol 57:249–257

    Article  CAS  Google Scholar 

  • Bagos PG, Tsirigos KD, Plessas SK, Liakopoulos TD, Hamodrakas SJ (2009) Prediction of signal peptides in archaea. Protein Eng Des Sel 22:27–35

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya D, Nagpure A, Gupta RK (2007) Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27:21–28

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brun E, Moriaud F, Gans P, Blakledge MJ, Barras F, Marion D (1997) Solution structure of the cellulose-binding domain of the endoglucanase Z secreted by Erwinia chrysanthemi. Biochemistry 36:16074–16086

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  Google Scholar 

  • Dahiya N, Tewari R, Hoondal GS (2006) Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol 71:773–782

    Article  CAS  PubMed  Google Scholar 

  • Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN, Contreras-Esquivel JC, Rodríguez-Herrera R (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92:2575–2580

    Article  PubMed  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  PubMed  Google Scholar 

  • Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19:261–278

    Article  CAS  PubMed  Google Scholar 

  • Essghaier B, Hedi A, Bejji M, Jijakli H, Boudabous A, Sadfi-Zouaoui N (2012) Characterization of a novel chitinase from a moderately halophilic bacterium, Virgibacillus marismortui strain M3-23. Ann Microbiol 62:835–841

    Article  CAS  Google Scholar 

  • Gao J, Bauer MW, Shockley KR, Pysz MA, Kelly RM (2003) Growth of hyperthermophilic archaeon Pyrococcus furiosus on chitin involves two family 18 chitinases. Appl Environ Microbiol 69:3119–3128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Han Y, Yang B, Zhang F, Miao X (2009) Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol 11:132–140

    Article  CAS  PubMed  Google Scholar 

  • Hatori Y, Sato M, Orishimo K, Yatsunami R, Endo K, Fukui T, Nakamura S (2006) Characterization of recombinant family 18 chitinase from extremely halophilic archaeon Halobacterium salinarum strain NRC-1. Chitin and Chitosan Research 12:201

    Google Scholar 

  • Holmes PK, Dundas IED, Halvorson HO (1965) Halophilic enzymes in cell-free extracts of Halobacterium salinarium. J Bacteriol 90:1159–1160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM, Eijsink VG (2006) Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J 273:491–503

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi M, Tokunaga H, Hiratsuka K, Yonezawa Y, Tsurumaru H, Arakawa T, Tokunaga M (2001) NaCl-activated nucleoside diphosphate kinase from extremely halophilic archaeon, Halobacterium salinarum, maintains native conformation without salt. FEBS Lett 493:134–138

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Watanabe J, Fukada H, Mizuno R, Kezuka Y, Nonaka T, Watanabe T (2006) Importance of Trp59 and Trp60 in chitin-binding, hydrolytic, and antifungal activities of Streptomyces griseus chitinase C. Appl Microbiol Biotechnol 72:1176–1184

    Article  CAS  PubMed  Google Scholar 

  • Litchfield CD (2011) Potential for industrial products from the halophilic Archaea. J Ind Microbiol 38:1635–1647

    Article  CAS  Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    CAS  Google Scholar 

  • Oku T, Ishikawa K (2006) Analysis of the hyperthermophilic chitinase from Pyrococcus furiosus: activity towards crystalline chitin. Biosci Biotechnol Biochem 70:1696–1701

    Article  CAS  PubMed  Google Scholar 

  • Orikoshi H, Nakayama S, Hanato C, Miyamoto K, Tsujibo H (2005) Role of the N-terminal polycystic kidney disease domain in chitin degradation by chitinase A from a marine bacterium, Alteromonas sp. strain O-7. J Appl Microbiol 99:551–557

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Khadatare PB, Roy I (2011) Effect of chemical chaperones in improving the solubility of recombinant proteins in Escherichia coli. Appl Environ Microbiol 77:4603–4609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–176

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. CSHLP, New York

    Google Scholar 

  • Shanmughapriya S, Kiran GS, Selvin J, Gandhimathi R, Baskar TB, Manilal A, Sujith S (2009) Optimization, production and partial characterization of an alkalophilic amylase produced by sponge associated marine bacterium Halobacterium salinarum MMD047. Biotechnol Bioproc Eng 14:67–75

    Article  CAS  Google Scholar 

  • Staufenberger T, Imhoff JF, Labes A (2012) First crenarchaeal chitinase found in Sulfolobus tokodaii. Microbiol Res 167:262–269

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Yaiyoji M, Sugawara N, Nikaidou N, Henrissat B, Watanabe T (1999) The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem J 343:587–596

    Article  CAS  PubMed  Google Scholar 

  • Synstad B, Gåseidnes S, van Aalten DMF, Vriend G, Nielsen JE, Eijsink VGH (2004) Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. Eur J Biochem 271:253–262

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Fujiwara S, Nishikori S, Fukui T, Takagi M, Imanaka T (1999) A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis. Appl Environ Microbiol 65:5338–5344

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji H, Nishimura S, Inui T, Kado Y, Ishikawa K, Nakamura T, Uegaki K (2010) Kinetic and crystallographic analyses of the catalytic domain of chitinase from Pyrococcus furiosus—the role of conserved residues in the active site. FEBS J 277:1–13

    Article  Google Scholar 

  • Vaaje-Kolstad G, Horn SJ, Sørlie M, Eijsink VGH (2013) The chitinolytic machinery of Serratia marcescens—a model system for enzymatic degradation of recalcitrant polysaccharides. FEBS J 280:3028–3049

    Article  CAS  PubMed  Google Scholar 

  • Wang SL, Lin BS, Liang TW, Wang CL, Wu PC, Liu JR (2010) Purification and characterization of chitinase from a new species strain, Pseudomonas sp. TKU008. J Microbiol Biotechnol 20:1001–1005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was developed within the Sustainable Use Network of Environmental and Agrifood Resources REDUSO and was supported by Grant 10PXIB310278PR (Xunta de Galicia). G.-F., B. has a predoctoral fellowship from the University of Vigo, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Sieiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Fraga, B., da Silva, A.F., López-Seijas, J. et al. Functional expression and characterization of a chitinase from the marine archaeon Halobacterium salinarum CECT 395 in Escherichia coli . Appl Microbiol Biotechnol 98, 2133–2143 (2014). https://doi.org/10.1007/s00253-013-5124-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5124-2

Keywords

Navigation