Skip to main content

Advertisement

Log in

Use of an in vitro flat-bed biofilm model to measure biologically active anti-odour compounds

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of this study was to demonstrate the utility of a modified flat-bed perfusion biofilm matrix system for testing toothpaste formulations directly, without dilution, as a layer in direct contact with the biofilm matrix surface. Final biofilm yields and volatile sulphur compounds (VSC) biogenesis were measured to show the relative efficacy of toothpaste formulations. Diffusion characteristics of the flat-bed system to exposure with Meridol® tooth and tongue gel (TTG; 1,400 ppm F from amine fluoride/stannous fluoride, 0.5 % zinc lactate, oral malodour counteractives) was assessed using a bioluminescent target species Escherichia coli Nissle 1917/pGLITE coupled with a low-light photon camera to visualise the kill kinetics. Tongue-flora derived, mixed culture biofilms (n = 4) received 5, 15 and 30 min treatment with TTG, respectively, to determine the optimum time of exposure. VSC biogenesis was measured from headspace samples by gas chromatography prior to and following treatment of two daily applications for 4 days of treatment (TTG), positive control (CHX gel) and negative controls (placebo and sham treatment). Viable counts were performed at the end of experiments by destructive sampling of the biofilms and plating onto selective and non-selective agar. Following a single treatment with TTG, the E. coli biofilm with lux target gave >50 % reduction of luminescence within 2 to 3 h before recovering to a steady state over 10 h, suggesting biofilm cidal activity rather biostasis. For mixed culture biofilms, 15- and 30-min treatment exposure with TTG gave almost identical reductions in final biofilm yields. For comparing efficacy of treatments, biofilms treated with TTG gave greatest reductions in both pre–post levels of H2S (P < 0.01) and CH3SH (P < 0.05) and population yields at the end of the experiments (P < 0.001) compared to placebo and positive control. The in vitro flat-bed perfusion model may be used to replicate many of the activities and reactions believed to be occurring by the tongue biofilm microflora within a real mouth, including VSC biogenesis and its inhibition by exposure to active agents as components of toothpastes and gels applied in direct contact with the biofilm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Addy M (2003) The use of antiseptics in periodontal therapy. In: Lindhe J, Karring T, Lang NP (eds) Clinical periodontology and implant dentistry. Munksgaard, Copenhagen, pp 461–482

    Google Scholar 

  • Arweiler NB, Netuschil L, Reich E (2001) Alcohol-free mouthrinse solutions to reduce supragingival plaque regrowth and vitality A controlled clinical study. J Clin Periodontol 28:168–174

    Article  PubMed  CAS  Google Scholar 

  • Bosy A, Kulkarni GV, Rosenberg M, McCulloch CA (1994) Relationship of oral malodour to periodontitis: evidence of independence in discrete subpopulations. J Periodontol 65:37–46

    Article  PubMed  CAS  Google Scholar 

  • Burnett GR, Stephen AS, Pizzey RL, Bradshaw DJ (2011) Int Dent J 61(Suppl. 3):67–73

    Article  PubMed  Google Scholar 

  • Duckworth RM, Morgan SN, Murray AM (1987) Fluoride in saliva and plaque following use of fluoride-containing mouthwashes. J Dent Res 66:1730–1734

    Article  PubMed  CAS  Google Scholar 

  • Flötra L, Gjermo P, Rölla G, Waerhaug J (1971) Side effects of chlorhexidine mouth washes. Scan J Dent Res 79:119–125

    Google Scholar 

  • Gilbert RJ, Ingram GS (1988) The oral disposition of zinc following the use of anti-calculus toothpaste containing 0.5% zinc citrate. J Pharmacol 40:399–402

    Article  CAS  Google Scholar 

  • Greenman J, Spencer PS, McKenzie C (2002) In vitro biofilm model to study hydrogen sulphide production. J Dent Res 81(Spec. Iss. B): abstract no. 2913

    Google Scholar 

  • Greenman J, McKenzie C, Saad S, Wiegand B, Zguris JC (2008) Effects of chlorhexidine on a tongue-flora microcosm and VSC production using an in vitro biofilm perfusion model J. Breath Res. doi:10.1088/1752-7155/2/4/046005

    Google Scholar 

  • Hartley G, El-Maaytah MA, McKenzie C, Greenman J (1996a) The tongue microbiota of low odour and malodourous individuals. Microb Ecol Heal Dis 9:215–223

    Article  Google Scholar 

  • Hartley G, El-Maaytah MA, McKenzie C, Greenman J (1996b) In: Van Steenberghe D, Rosenberg M (eds) Bad breath: a multidisciplinary approach. Assessment of impressed toothbrush as a method to sampling tongue microbiota. Leuven University Press, Belgium, pp 123–133

    Google Scholar 

  • Hess J, Greenman J, Duffield JR (2008) Modelling oral malodour from a tongue biofilm. J Breath Res 2:017003. doi:10.1088/1752-7155/2/1/017003, 6pp

    Article  PubMed  Google Scholar 

  • Künzell W, Stösser L, Shulz E (1990) Plaqueinhibition durch aminfluorid/zinnfluorid. Quintessenz 41:1813–24

    Google Scholar 

  • Loesche, WJ., De Boever, HH (1995) In: Rosenberg, M. (ed). Bad breath: research perspectives. Strategies to identify the main microbial contributors to oral malodour. Ramot Publishing, Tel Aviv University, pp 41–54

  • Lynch RJM (2011) Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature. Int Dent J 61(Suppl 3):46–54. doi:10. 1111/j.1875-595-X.2011.00049.x

    Article  PubMed  Google Scholar 

  • Massler M, Emslie RD, Bolden TE (1951) Fetor ex ore. Oral Surg 4:110–125

    Article  PubMed  CAS  Google Scholar 

  • Natsch A and Moraes E (2007) Compositions and methods to counteract oral malodour. Patent: International publication number: WO 2007025401 International application number: PCT/CH2006/000459

  • Otten MPT, Busscher HJ, van der Mei HC, van Hoogmoed CG (2011) Abbas F (2011) Acute and substantive action of antimicrobial toothpastes and mouthrinses on oral biofilms in vitro. Eur J Oral Sci 119:151–155. doi:10.1111/j.1600-0722.2011.00812.x

    Article  PubMed  CAS  Google Scholar 

  • Paraskevas S, Danser MM, Timmerman MF, Van der Velden U, Van der Weijden GA (2004) Effect of a combination of amine/stannous fluoride dentifrice and mouthrinse in periodontal maintenance patients. J Clin Periodontol 31:177–183

    Article  PubMed  CAS  Google Scholar 

  • Pizzo G, La CM, Licata ME, Pizzo I, D’Angelo M (2008) The effects of an essential oil and amine fluoride/stannous fluoride mouthrinse on supragingival plaque regrowth. J Periodontol 1177–1183

  • Quirynen M (2003) Management of oral malodour. J Clin Periodontol 30:17–18. doi:10.1034/j.1600-051X.30.s5.6.x

    Google Scholar 

  • Quirynen M, Zhao H, van Steenberghe D (2002) Review of the strategies for oral malodour. Clin Oral Invest 6: 1-1- DOI 10.1007/s0084-002-0152-9

  • Roldán S, Winkel EG, Herrera D, Sanz M, Van Winkelhoff AJ (2003) The effects of a new mouthrinse containing chlorhexidine, cetylpyridinium chloride and zinc lactate on the microflora of oral halitosis patients: a dual-centre, double-blind placebo-controlled study. J Clin Periodontol 30(5):427–34

    Article  PubMed  Google Scholar 

  • Saad S (2006). The study of the tongue biofilm and its role in malodour of microbial aetiology, PhD thesis, University of the West of England, Bristol, UK

  • Saad S and Greenman J (2008) Tongue biofilm arial density and tongue coating index. J Breath Res 2 (1) (special issue):1–4

  • Saad S, Hewett K, Greenman J (2012) Effect of mouth-rinse formulations on oral malodour processes in tongue-derived perfusion biofilm model. J Breath Res 6:016001. doi:10.1088/1752-7155/6/1/016001, 11pp

    Article  PubMed  CAS  Google Scholar 

  • Scheie AA (2003) The role of antimicrobials. In: Fejerskov O, Kidd E (eds) Dental caries: the disease and is clinical management. Blackwell Munksgaard, Oxford, pp 179–188

    Google Scholar 

  • Schmidt NF, Tarbet WJ (1978) The effect of oral rinses on organoleptic mouth odor ratings and levels of volatile sulphur compounds. Oral Surg Oral Med Oral Pathol 45:876–883

    Article  PubMed  CAS  Google Scholar 

  • Schmidt NF, Missan SR, Tarbet WJ, Cooper AD (1978) The correlation between organoleptic mouth-odor ratings and levels of volatile sulfur compounds. Oral Surg Oral Med Oral Pathol 45:560–567

    Article  PubMed  CAS  Google Scholar 

  • Spencer PS, Greenman J, McKenzie C, Flanagan AJ (2003) In vitro perfusion biofilm model for the growth of oral microbes associated with oral malodour. ASM poster presentation, Biofilms 2003, Victoria, BC, 1–6 November, Poster 52A, p. 63

  • Spencer PS, Greenman J, McKenzie C, Gafan G, Spratt D, Flanagan A (2007) In vitro model for studying tongue flora and oral malodour. J Appl Microbiol 103(4):985–992

    Article  PubMed  CAS  Google Scholar 

  • Takenaka S, Trivedi HM, Corbin A, Pitts B, Stewart PS (2008) Direct visualization of spatial and temporal patterns of antimicrobial action within model oral biofilms. Appl Environ Microbiol 74:1869–1875

    Article  PubMed  CAS  Google Scholar 

  • Taylor B and Greenman J (2010) Modelling the effects of pH on tongue biofilm using a sorbarod biofilm perfusion system. J Breath Res 4:doi:10.1088/1752-7155/4/1/017107

  • Thorn RM, Greenman J (2009) A novel in vitro flat-bed perfusion biofilm model for determining the potential antimicrobial efficacy of topical wound treatments. J Appl Microbiol 107:2070–2079

    Article  PubMed  CAS  Google Scholar 

  • Tonzetich J (1971) Direct gas chromatographic analysis of sulphur compounds in mouth air in man. Arch Oral Biol 16:587–597

    Article  PubMed  CAS  Google Scholar 

  • Tonzetich J (1977) Production and origin of oral malodour: a review of mechanisms and methods of analysis. J Periodontol 48:13–20

    Article  PubMed  CAS  Google Scholar 

  • Tonzetich J, Kestenbaum RC (1969) Odour production by human salivary fractions and plaque. Arch Oral Biol 14:815–827

    Article  PubMed  CAS  Google Scholar 

  • Tonzetich J, Richter VJ (1964) Evaluation of volatile odiferous components of saliva. Arch Oral Biol 9:39–45

    Article  PubMed  CAS  Google Scholar 

  • Tonzetich J, Eigen E, King WJ, Weiss S (1967) Volatility as a factor in the inability of certain amines and indole to increase the odor of saliva. Arch Oral Biol 12:1167–1175

    Article  PubMed  CAS  Google Scholar 

  • Van Loveren C (2001) Antimicrobial activity of fluoride and its in vivo importance: identification of research questions. Caries Res 35(Suppl. 1):65–70

    Article  PubMed  Google Scholar 

  • Van Steenberghe D, Avontroodt P, Peeters W, Pauwels M, Couke W, Lijnen A, Quirynen M (2001) Effect of different mouthrinses on morning breath. J Periodotonl 72(9):1183–91

    Article  Google Scholar 

  • Weiland B, Netuschil L, Hoffmann T, Lorenz K (2008) Substantivity of amine fluoride/stannous fluoride following different modes of application: a randomized, investigator-blind, placebo-controlled trial. Acta Odontol Scand 66:307–313

    Article  PubMed  CAS  Google Scholar 

  • White DA (1995) “Return” to stannous fluoride dentifrices. J Clin Dent 6:29–36

    PubMed  Google Scholar 

  • Wigger-Alberti W, K Gysen, E-M Axmann and Wilhelm K-P (2010) Efficacy of a new mouthrinse formulation on the reduction of oral malodour in vivo: a randomized, double-blind, placebo-controlled, 3 week clinical study. J Breath Res 4 doi: 10. 1088/1752-7155/4/017102

  • Wilhelm D, Gysen K, Himmelmann A, Krausse C and Wilhelm K-P (2010) Short–term effect of a new mouthrinse formulation on oral malodour after a single use in vivo: a comparative, randomized, single-blind, parallel-group clinical study. J Breath Res 4 doi: 10.1088/1752-7155/4/3/036002

Download references

Acknowledgements

This study was supported by GABA International AG, Therwil, Switzerland. The authors would also like to thank Dr Hans Stettler for his continuous support and for the critical review of the manuscript and Dr Robin Thorn for his help with the use of the light photon camera.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, S., Hewett, K. & Greenman, J. Use of an in vitro flat-bed biofilm model to measure biologically active anti-odour compounds. Appl Microbiol Biotechnol 97, 7865–7875 (2013). https://doi.org/10.1007/s00253-013-5084-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5084-6

Keywords

Navigation