Skip to main content
Log in

Differentiation of species of the genus Saccharomyces using biomolecular fingerprinting methods

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The genus Saccharomyces comprises very closely related species. This high degree of relationship makes a simple identification and differentiation of strains difficult since these species are hardly discriminable by their morphological and physiological features. A sequence analysis of ribosomal DNA and the corresponding internal transcribed spacers can only rarely be successfully applied. In this study, we proved the applicability of a novel DNA fingerprinting method, the SAPD-PCR (specifically amplified polymorphic DNA) and of MALDI-TOF-MS (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) fingerprinting with the MALDI Biotyper for the differentiation of species belonging to the genus Saccharomyces. It was possible with SAPD-PCR to create specific banding patterns for all Saccharomyces species. Different strains of the same species produced nearly the same banding patterns. Specific and reproducible reference spectra could be generated for each of the strains with the MALDI Biotyper. Therefore, SAPD-PCR and MALDI-TOF-MS can be fast and reliable tools to identify these related Saccharomyces species which are applied in many biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antunovics Z, Irinyi L, Sipiczki M (2005) Combined application of methods to taxonomic identification of Saccharomyces strains in fermenting botrytized grape must. J Appl Microbiol 98:971–979

    Article  CAS  Google Scholar 

  • Blättel V (2012) Identifizierung, Quantifizierung und Hemmung von ausgewählten Hefen im Wein. Dissertation, Johannes Gutenberg-University Mainz

  • Brito dos Santos SK, Moreira Brasilio AC, Valente Brasileiro BTR, Simoes DA, Alves da Silva-Filho E, de Morais M (2007) Identification of yeasts within Saccharomyces sensu stricto complex by PCR-fingerprinting. World J Microbiol Biotechnol 23:1613–1620

    Article  CAS  Google Scholar 

  • De Barros Lopes M, Soden A, Martens AL, Henschke PA, Langridge P (1998) Differentiation and species identification of yeasts using PCR. Int J Syst Bacteriol 48:279–286

    Article  Google Scholar 

  • Demuyter C, Lollier M, Legras JL, Le Jeune C (2004) Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery. J Appl Microbiol 97:1140–1148

    Article  CAS  Google Scholar 

  • Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL (2011) Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol 49:1614–1616

    Article  CAS  Google Scholar 

  • Fernández-Espinar M, Barrio E, Querol A (2003) Analysis of the genetic variability in the species of the Saccharomyces sensu stricto complex. Yeast 20:1213–1226

    Article  Google Scholar 

  • Fröhlich J, Pfannebecker J (2007) Species-independent DNA fingerprint analysis with primers derived from the NotI identification sequence. Patent number: EP2027285 (A1)

  • González SS, Barrio E, Gafner J, Querol A (2006) Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res 6:1221–1234

    Article  Google Scholar 

  • González SS, Barrio E, Querol A (2008) Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl Environ Microbiol 74:2314–2320

    Article  Google Scholar 

  • Greig D (2009) Reproductive isolation in Saccharomyces. Heredity 102:39–44

    Article  CAS  Google Scholar 

  • Groth C, Hansen J, Piskur J (1999) A natural chimeric yeast containing genetic material from three species. Int J Syst Bacteriol 49:1933–1938

    Article  CAS  Google Scholar 

  • Hadrys H, Balick M, Schierwater B (1992) Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol Ecol 1:55–63

    Article  CAS  Google Scholar 

  • Jensen RH, Arendrup MC (2011) Candida palmioleophila: characterization of a previously overlooked pathogen and its unique susceptibility profile in comparison with five related species. J Clin Microbiol 49:549–556

    Article  Google Scholar 

  • Kawahata M, Fujii T, Iefuji H (2007) Intraspecies diversity of the industrial yeast strains Saccharomyces cerevisiae and Saccharomyces pastorianus based on analysis of the sequences of the internal transcribed spacer (ITS) regions and the D1/D2 region of 26S rDNA. Biosci Biotechnol Biochem 71:1616–1620

    Article  CAS  Google Scholar 

  • Le Jeune C, Lollier M, Demuyter C, Erny C, Legras JL, Aigle M, Masneuf-Pomarède I (2007) Characterization of natural hybrids of Saccharomyces cerevisiae and Saccharomyces bayanus var. uvarum. FEMS Yeast Res 7:540–549

    Article  Google Scholar 

  • Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, Gonçalves P, Sampaio J (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci USA 108:14539–14544

    Article  CAS  Google Scholar 

  • Liti G, Barton DB, Louis EJ (2006) Sequence diversity, reproductive isolation and species concepts in Saccharomyces. Genetics 174:839–850

    Article  CAS  Google Scholar 

  • Lopandic K, Gangl H, Wallner E, Tscheik G, Leitner G, Querol A, Borth N, Breitenbach M, Prillinger H, Tiefenbrunner W (2007) Genetically different wine yeasts isolated from Austrian vine-growing regions influence wine aroma differently and contain putative hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii. FEMS Yeast Res 7:953–965

    Article  CAS  Google Scholar 

  • Lopes CA, Barrio E, Querol A (2010) Natural hybrids of S. cerevisiae × S. kudriavzevii share alleles with European wild populations of Saccharomyces kudriavzevii. FEMS Yeast Res 10:412–421

    Article  CAS  Google Scholar 

  • Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl H-G (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast reliable identification of clinical yeast isolates. J Clin Microbiol 47:2912–2917

    Article  CAS  Google Scholar 

  • Masneuf I, Hansen J, Groth C, Piskur J, Dubourdieu D (1998) New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains. Appl Environ Microbiol 64:3887–3892

    CAS  Google Scholar 

  • Masneuf-Pomarède I, Bely M, Marullo P, Lonvaud-Funel A, Dubourdieu D (2010) Reassessment of phenotypic traits for Saccharomyces bayanus var. uvarum wine yeast strains. Int J Food Microbiol 139:79–86

    Article  Google Scholar 

  • Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, Lasala P, Kostrzewa M, Harmsen D (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946–1954

    Article  CAS  Google Scholar 

  • Montrocher R, Verner MC, Briolay J, Gautier C, Marmeisse R (1998) Phylogenetic analysis of the Saccharomyces cerevisiae group based on polymorphisms of rDNA spacer sequences. Int J Syst Bacteriol 48:295–303

    Article  CAS  Google Scholar 

  • Naumov GI, James SA, Naumova ES, Louis DJ, Roberts IN (2000) Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus, Saccharomyces kudriavzevii and Saccharomyces mikatae. Int J Syst Evol Microbiol 50:1931–1942

    CAS  Google Scholar 

  • Naumov GI, Lee C-F, Naumova ES (2013) Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: S. arboricola, S. cerevisiae and S. kudriavzevii. Antonie van Leeuwenhoek 103:217–228

    Article  CAS  Google Scholar 

  • Naumova ES, Naumov GI, Masneuf-Pomarède I, Aigle M, Dubourdieu D (2005) Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae. Yeast 22:1099–1115

    Article  CAS  Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  Google Scholar 

  • Pfannebecker J, Fröhlich J (2008) Use of a species-specific multiplex PCR for the identification of pediococci. Int J Food Microbiol 128:288–296

    Article  CAS  Google Scholar 

  • Querol A, Bond U (2009) The complex and dynamic genomes of industrial yeasts. FEMS Microbiol Lett 293:1–10

    Article  CAS  Google Scholar 

  • Rainieri S, Zambonelli C, Kaneko Y (2003) Saccharomyces sensu stricto: systematics, genetic diversity and evolution. J Biosci Bioeng 96:1–9

    CAS  Google Scholar 

  • Redzepović S, Orlić S, Sikora S, Majdak A, Pretorius IS (2002) Identification and characterization of Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated from Croatian vineyards. Lett Appl Microbiol 35:305–310

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sampaio JP, Gonçalves P (2008) Natural populations of Saccharomyces kudriavzevii in Portugal are associated with oak bark and are sympatric with S. cerevisiae and S. paradoxus. Appl Environ Microbiol 74:2144–2152

    Article  CAS  Google Scholar 

  • Sebastian P, Herr P, Fischer U, König H (2011) Molecular identification of lactic acid bacteria occurring in must and wine. S Afr J Enol Vitic 32:300–309

    CAS  Google Scholar 

  • Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  CAS  Google Scholar 

  • Sicard D, Legras JL (2011) Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C R Biol 334:229–236

    Article  Google Scholar 

  • Sipiczki M (2008) Interspecies hybridization and recombination in Saccharomyces wine yeasts. FEMS Yeast Res 8:996–1007

    Article  CAS  Google Scholar 

  • Stevenson LG, Drake SK, Shea YR, Zelazny M, Murray PR (2010) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol 48:3482–3486

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tornai-Lehoczki J, Péter G, Dlauchy D, Deák T (1996) Some remarks on “a taxonomic key for the genus Saccharomyces” (Vaughan Martini and Martini 1993). Antonie van Leeuwenhoek 69:229–233

    Article  CAS  Google Scholar 

  • Torriani S, Zapparoli G, Suzzi G (1999) Genetic and phenotypic diversity of Saccharomyces sensu stricto strains isolated from Amarone wine. Diversity of Saccharomyces strains from Amarone wine. Antonie van Leeuwenhoek 75:207–215

    Article  CAS  Google Scholar 

  • Torriani S, Zapparoli G, Malacrinò P, Suzzi G, Dellaglio F (2004) Rapid identification and differentiation of Saccharomyces cerevisiae, Saccharomyces bayanus and their hybrids by multiplex PCR. Lett Appl Microbiol 38:239–244

    Article  CAS  Google Scholar 

  • Vaughan-Martini A, Martini A (2011) Saccharomyces Meyen ex Reess (1870). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts, a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 733–746

    Chapter  Google Scholar 

  • Wang SA, Bai FY (2008) Saccharomyces arboricolus sp. nov., a yeast species from tree bark. Int J Syst Evol Microbiol 58:510–514

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the German Science Foundation for financial support (Ko 785/17-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Petri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blättel, V., Petri, A., Rabenstein, A. et al. Differentiation of species of the genus Saccharomyces using biomolecular fingerprinting methods. Appl Microbiol Biotechnol 97, 4597–4606 (2013). https://doi.org/10.1007/s00253-013-4823-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4823-z

Keywords

Navigation