Skip to main content

Advertisement

Log in

Biotechnology of non-Saccharomyces yeasts—the ascomycetes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aehle W (ed) (2007) Enzymes in industry: production and applications, 3rd edn, Wiley-VCH, Weinheim

  • Agrawal R, Singh NR, Ribeiro FH, Delgrass WN (2007) Sustainable fuel for the transportation sector. Proc Natl Acad Sci U S A 104:4828–4833

    Article  CAS  Google Scholar 

  • Airola K, Petman L, Makinen-Kiljunen S (2006) Clustered sensitivity to fungi: anaphylactic reactions caused by ingestive allergy to yeasts. Ann Allergy Asthma Immunol 97:294–297

    Article  Google Scholar 

  • Aldhous P (2000) Modified yeast fine for food. Nature 344:186

    Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopolous G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  Google Scholar 

  • Ansari SA, Satar R (2012) Recombinant beta-galactosidases—past, present and future: a review. J Mol Catal B Enzym 81:1–6

    Article  CAS  Google Scholar 

  • Antoni JL, Chaufer B, Daufin G (2003) Non-food applications of milk components and dairy co-products: a review. Lait 83:417–438

    Article  CAS  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77:23–35

    Article  CAS  Google Scholar 

  • Avis TJ, Cheng YL, Zhao YY, Bolduc S, Neveu B, Anguenot R, Labbé C, Belzile F, Bélanger RR (2005) The potential of Pseudozyma yeastlike epiphytes for the production of heterologous recombinant proteins. Appl Microbiol Biotechnol 69:304–311

    Article  CAS  Google Scholar 

  • Becher R, Wirsel SGR (2012) Fungal cytochrome P450 sterol 14 alpha-demethylase (CYP51) and azole resistance in plant and human pathogens. Appl Microbiol Biotechnol 95:825–840

    Article  CAS  Google Scholar 

  • Bekatorou A, Psarianos C, Koutinas AA (2006) Production of food grade yeasts. Food Technol Biotechnol 44:407–415

    Google Scholar 

  • Belem MA, Lee BH (1998) Production of bioingredients from Kluyveromyces lactis grown on whey; an alternative. Crit Rev Food Sci Nutr 38:565–598

    Article  CAS  Google Scholar 

  • Beopoulos A, Nicaud J-M, Gallardin C (2011) An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 90:1193–1206

    Article  CAS  Google Scholar 

  • Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145

    Article  CAS  Google Scholar 

  • Besirbellioglu BA, Ulcay A, Can M, Erdem H, Tanyuksel M, Avci IY, Araz E, Pahsa A (2006) Saccharomyces boulardii and infection due to Giardia lamblia. Scand J Infect Dis 38:479–481

    Article  Google Scholar 

  • Bisson LF (2004) Biotechnology of wine yeast. Food Biotechnol 18:63–96

    Article  CAS  Google Scholar 

  • Blaser H-U (2003) Enantioselective catalysis in fine chemicals production. Chem Commun 3:293–296

    Article  CAS  Google Scholar 

  • Blaser H-U, Pugin B, Spindler F (2005) Progress in enantioselective catalysis assessed from an industrial point of view. J Molec Catalysis A Chemical 231:1–20

    Article  CAS  Google Scholar 

  • Böer E, Steinborn G, Kunze G, Gellisen G (2007) Yeast expression platforms. Appl Microbiol Biotechnol 77:513–523

    Article  CAS  Google Scholar 

  • Boettner M, Steffens C, von Mering C, Bork B, Stahl U, Lang C (2007) Sequence-based factors influencing the expression of heterologous genes in the yeast Pichia pastoris—comparative view of 79 human genes. J Biotechnol 130:1–10

    Article  CAS  Google Scholar 

  • Bonrath W, Netscher T (2005) Catalytic processes in vitamins synthesis and production. Appl Catal A: General 280:55–73

    Article  CAS  Google Scholar 

  • Breuer U, Harms H (2006) Debaryomyces hansenii—an extremophilic yeast with biotechnological potential. Yeast 23:415–437

    Article  CAS  Google Scholar 

  • Buckholz RG, Gleeson MAG (1991) Yeast systems for the commercial production of heterologous proteins. Nature Biotechnol 9:1067–1072

    Article  CAS  Google Scholar 

  • Buts J-P (2009) Twenty-Five Years of Research on Saccharomyces boulardii Trophic Effects: Updates and Perspectives. Dig Dis Sci 54(1):15–18

    Google Scholar 

  • Buts J-P, Bernasconi P (2005) Saccharomyces boulardii: basic science and clinical applications in gastroenterology. Gastroenterol Clin N Amer 34:515–532

    Article  Google Scholar 

  • Buzzini P, Martini A (2001) Large-scale screening of selected Candida maltosa, Debaryomyces hansenii, and Pichia anomala killer toxin activity against pathogenic yeasts. Med Mycol 39:479–482

    CAS  Google Scholar 

  • Cai Z, Zhang B (2012) Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol J 7(SI):34–46

    Article  CAS  Google Scholar 

  • Cheetham PSJ (2004) Bioprocesses for the manufacture of ingredients for foods and cosmetics. Adv Biochem Engin Biotechnol 86:83–158

    CAS  Google Scholar 

  • Chenevert R, Pelchat N, Jacques F (2006) Stereoselective enzymatic acylations. Curr Organ Chem 10:1067–1094

    Article  CAS  Google Scholar 

  • Cherry JR, Fidanstef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  CAS  Google Scholar 

  • Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  CAS  Google Scholar 

  • Clare J, Sreekrishna K, Romanos M (1998) Expression of tetanus toxin fragment C. Meth Mol Biol 103:193–208

    CAS  Google Scholar 

  • Cohen C, Ratledge C (eds) (2005) Single cell oils. AOCS Press, Champaign

    Google Scholar 

  • Cooper CR (2011) Yeasts pathogenic for humans and animals. In: Kurtzman CP, Fell JW, Boekhout T (eds) The Yeasts: A Taxonomic Study, 5th edn. Vol. 1. Elsevier, Amsterdam p 9–19

  • Cousens LS, Shuster JR, Gallegos C, Ku L, Stempien MM, Urdea MS, Sanchez-Pescador R, Taylor A, Tekampolson P (1987) High-level expression of proinsulin in the yeast, Saccharomyces cerevisiae. Gene 61:265–275

    Article  CAS  Google Scholar 

  • Cowan D (1996) Industrial enzyme technology. TIBTECH 14:177–178

    Article  CAS  Google Scholar 

  • Cregg JM (ed) (2007) Pichia protocols, 2nd edn. Humana Press, Totowa

    Google Scholar 

  • Dai CC, Tao J, Xie F, Dai YJ, Zhao M (2007) Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating activity. African J Biotechnol 6:2130–2134

    CAS  Google Scholar 

  • Dalmass G, Cottrez F, Imbert V, Lagadec P, Peyron JF, Rampal P, Czerucka D, Groux H (2006) Saccharomyces boulardii inhibits inflammatory bowel disease by trapping T cells in mesenteric lymph nodes. Gastroenterol 131:1812–1825

    Article  CAS  Google Scholar 

  • Daly R, Hearn MTW (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Molec Recog 18:119–138

    Article  CAS  Google Scholar 

  • De Mot R, Verachtert H (1982) Biocatalysis and biotechnology with yeasts. ASM News 50:526–531

    Google Scholar 

  • Dujon B (2006) Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. Trends Genet 22:375–387

    Article  CAS  Google Scholar 

  • Dujon B, Sherman D, Fisher G (2004) Genome evolution in yeasts. Nature 430:35–44

    Article  Google Scholar 

  • Edwards-Ingram L, Gitsham P, Burton N, Warhurst G, Clarke I, Hoyle D, Oliver SG, Stateva L (2007) Genotypic and physiological characterization of Saccharomyces boulardii, the probiotic strain of Saccharomyces cerevisiae. Appl Environ Microbiol 73:2458–2467

    Article  CAS  Google Scholar 

  • Evans D, Das R (2005) Monoclonal antibody therapies: evolving into a $30 billion market. Data Monitor, London

    Google Scholar 

  • Faber K (2004) Biotransformations in organic chemistry, 5th edn. Springer, Heidelberg and Berlin, Germany

    Book  Google Scholar 

  • Farid SS (2006) Process economics of industrial monoclonal antibody manufacture. J Chromatogr B—Anal Technol Biomed Life Sci 848:8–18

    Article  CAS  Google Scholar 

  • Farrell AE, Plevin RJ, Tuner BT, Jones AD, O’hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  CAS  Google Scholar 

  • Fenn JP (2007) Update of medically important yeasts and a practical approach to their identification. Lab Med 38:178–183

    Article  Google Scholar 

  • Ferrer M, Beloqui A, Golyshin PN (2007a) Microbial metagenomes: moving forward industrial biotechnology. J Chem Technol Biotechnol 82:421–423

    Article  CAS  Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007b) Mining enzymes from extreme environments. Curr Opin Microbiol 10:207–214

    Article  CAS  Google Scholar 

  • Fickers P, Bennett PH, Wache MYA, Mauersberger S, Smit MS, Nicaud J-M (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–554

    Article  CAS  Google Scholar 

  • Fickers P, Alain M, Nicaud JM (2011) The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnol Adv 29:632–644

    Article  CAS  Google Scholar 

  • Flamm EL (1991) How FDA approved chymosin: a case study. Nature Biotechnol 9:349–351

    Article  CAS  Google Scholar 

  • Fleer R (1992) Engineering yeast for high level expression. Curr Opin Biotechnol 3:486–496

    Article  CAS  Google Scholar 

  • Fleet GH (2007) Yeasts in food and beverages: impact on product quality and safety. Curr Opin Biotechnol 18:170–175

    Article  CAS  Google Scholar 

  • Flores CL, Rodríguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529

    CAS  Google Scholar 

  • Fric P (2007) Probiotics and prebiotics—renaissance of a therapeutic principle. Central Eur J Med 2:237–270

    Article  Google Scholar 

  • Garcia EE, Belin JM, Wache Y (2007) Use of a Doehlert factorial design to investigate the effects of pH and aeration on the accumulation of lactones by Yarrowia lipolytica. J Appl Microbiol 103:1508–1515

    Article  CAS  Google Scholar 

  • Gasmi M, Auyed A, Ammar BBH, Zrigui R, Nicaud JM, Kallel H (2011) Development of a cultivation process for the enhancement of human interferon alpha 2b production in the oleaginous yeast, Yarrowia lipolytica. Cell Factories 10:90

    Article  CAS  Google Scholar 

  • Gasser B, Mattanovich D (2007) Antibody production with yeasts and filamentous fungi: on the road to large scale? Biotechnol Lett 29:201–212

    Article  CAS  Google Scholar 

  • Gellisen G (ed) (2002) Hansenula polymorpha. Biology and applications. Wiley-VCH Verlag, GmbH, Weinheim

    Google Scholar 

  • Gellissen G (ed) (2005) Production of recombinant proteins. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim

    Google Scholar 

  • Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica—a comparison. FEMS Yeast Res 5:1079–1096

    Article  CAS  Google Scholar 

  • Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426:227–237

    Article  CAS  Google Scholar 

  • Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414

    Article  CAS  Google Scholar 

  • Ghoneum M, Wang L, Agrawal S, Gollapudi S (2007) Yeast therapy for the treatment of breast cancer: a nude mice model. In Vivo 21:251–258

    Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  CAS  Google Scholar 

  • Gounaris Y (2010) Biotechnology for the production of essential oils, flavours and volatile isolates. A revew Flav Frag J 25:367–386

    Article  CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol Curr Opin Chem Biol 10:141–146

    Article  CAS  Google Scholar 

  • Gunde-Cinerman N, Ramos J, Piemenitas A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241

    Article  CAS  Google Scholar 

  • Guo C, Zhao C, He P, Lu D, Shen A, Jiang N (2006) Screening and characterization of yeasts for xylitol production. J Appl Microbiol 101:1096–1104

    Article  CAS  Google Scholar 

  • Hadfield C, Raina KK, Shahimenon K, Mount RC (1993) The expression and performance of cloned genes in yeasts. Mycol Res 97:897–944

    Article  CAS  Google Scholar 

  • Hagel JM, Krizevski R, Marsolais F, Lewinsohn E, Facchini PJ (2012) Biosynthesis of amphetamine analogs in plants. Trends Plant Sci 17:404–412

    Article  CAS  Google Scholar 

  • Hahn T, Tag K, Riedel K, Uhlig S, Baronian K, Gellisen G, Kunze G (2006) A novel estrogen sensor based on recombinant Arxula cells. Biosensors Bioelectron 21:2078–2085

    Article  CAS  Google Scholar 

  • Hahn-Hägerdahl B, Karhummaa K, Fonseca C, Spencer-Martins I, Gorwa-Grausland MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  CAS  Google Scholar 

  • Halász A, Lásztity R (1991) Use of yeast biomass in food production. CRC Press, Boca Raton, p 312

    Google Scholar 

  • Hall N (2007) Advanced sequencing technologies and their wider impact in microbiology. J Exp Biol 210:1518–1525

    Article  CAS  Google Scholar 

  • Hamilton SR, Gerngross TU (2007) Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 18:387–392

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of lipases. Enz Microb Technol 39:235–251

    Article  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103:11206–11210

    Article  CAS  Google Scholar 

  • Hilterhaus L, Liese A (2007) Building blocks. ADV Biochem Eng Biot 105:133–173

    Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimios MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  • Hitzeman RA, Hagie FE, Levine HL, Goeddel DV, Ammerere G, Hall BD (1981) Expression of a human gene for interferon in yeast. Nature 293:717–722

    Article  CAS  Google Scholar 

  • Holck P, Sletmoen M, Stokke BT, Permin H, Norn S (2007) Potentiation of histamine release by microfungal (1–3) and (1–6)-beta-d-glucans. Basic Clin Pharmacol Toxicol 101:455–458

    Article  CAS  Google Scholar 

  • Hou J, Tyo KEJ, Liu ZH, Petranovic D, Nielsen J (2012) Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 12:491–510

    Article  CAS  Google Scholar 

  • Houard S, Heinderyckx M, Bollen A (2002) Engineering of non-conventional yeasts for efficient synthesis of macromolecules: the methylotrophic genera. Biochimie 84:1089–1093

    Article  CAS  Google Scholar 

  • Idris A, Buykhari A (2012) Immobilized Candida antarctica lipase B: hydration, stripping off and application in ring opening polyester biosynthesis. Biotechnol Adv 30:550–563

    Article  CAS  Google Scholar 

  • Ilmén M, Koivuranta K, Suominen P, Pentilä M (2007) Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl Environ Microbiol 73:117–123

    Article  CAS  Google Scholar 

  • Jablonowski D, Shcaffrath R (2007) Zymocin, a composite chitinase and tRNase killer toxin from yeast. Biochem Soc Trans 35:1533–1537

    Article  CAS  Google Scholar 

  • Jahic M, Veide A, Charoenrat T, Teeri T, Enfors SO (2006) Process technology for production and recovery of heterologous proteins with Pichia pastoris. Bioechnol Prog 22:1465–1473

    CAS  Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnnol 17:320–326

    Article  CAS  Google Scholar 

  • Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25:319–326

    Article  CAS  Google Scholar 

  • Ji ZH, Bai FY (2008) Ogateia ganodermae sp. nov., a methanol-assimilating yeast species from basidiocarps of Ganoderma sp. Int J Syst Evol Microbiol 58:1502–1506

    Article  CAS  Google Scholar 

  • Johnson EA (2013) Biotechnology of non-Saccharomyces yeasts—the Basidiomycetes. Appl Microbiol Biotechnol (in press)

  • Johnson EA, Echavarri C (2011) Yeast biotechnology. In: Kurtzman CP, Fell JW, Boekhout T (eds) The Yeasts. A taxonomic study, vol 1, 5th edn. Elsevier, Amsterdam, pp 21–44

    Chapter  Google Scholar 

  • Jordan PA, Gibbins JM (2006) Extracellular disulfide exchange and the regulation of cellular function. Antiox Redox Signal 8:312–324

    Article  CAS  Google Scholar 

  • Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschai K (2012) Plant cell walls to ethanol. Biochem J 442:241–252

    Article  CAS  Google Scholar 

  • Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Proc Biochem 47:555–569

    Article  CAS  Google Scholar 

  • Kato K, Kurimura Y, Makiguchi N, Asai Y (1974) Determination of strongly methanol assimilating yeasts. J Gen Appl Microbiol 20:123–127

    Article  Google Scholar 

  • Kendon RP, Kerr WA, Cullen SE (1986) Foresight in forecasting—the case of petrochemicals. J Gen Manag 12:41–57

    Google Scholar 

  • Khanna S, Goyal A, Moholkar VS (2012) Microbial conversion of glycerol: present and future prospects. Crit Rev Biotechnol 32:235–262

    Article  CAS  Google Scholar 

  • Kirk O, Borchert TV, Fugisang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  Google Scholar 

  • Klein RD, Favreau MA (1995) The Candida species: biochemistry, molecular biology, and industrial applications. In: Hui YH, Khachatourians GG (eds) Food Biotechnology. Microorganisms. VCH Publishers, New York, pp 297–371

    Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  • Koeller KM, Wong C-H (2001) Enzymes for chemical synthesis. Nature 409:232–240

    Article  CAS  Google Scholar 

  • Koul S, Koul JL, Singh B, Kapoor M, Parshad R, Manhas KS, Taneja SC, Qazi GN (2005) Trichosporon beigelli esterase (TBE): a versatile esterase for the resolution of economically important racemates. Tetrahedron-Asymmetry 16(15):2575–2591

    Google Scholar 

  • Kristan K, Rizner TL (2012) Steroid-transforming enzymes in fungi. J Steroid Bioechem Molec Biol 129:79–91

    Article  CAS  Google Scholar 

  • Kuberi A, Schneider J, Thallinger GG, Anderl I, Wibberg D, Hajek T, Jaenicke S, Brinkrolf K, Goesmann A, Szczepanowski R, Puhler A, Schwab H, Glieder A, Pichler H (2011) High-quality genome sequence of Pichia pastoris CBS7435. J Biotechnol 154:312–320

    Article  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Khasa YP, Singh A, Zhang YHP (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew Sustain Energy Rev 15(9):4950–4962

    Article  CAS  Google Scholar 

  • Kumar S, Ranhawa A, Ganesan K, Raghava GPS, Ak M (2012) Draft genome sequence of salt-tolerant Debaryomyces hansenii var. hansenii MTCC 234. Eukaryot Cell 11:961–962

    Article  CAS  Google Scholar 

  • Kuoda K, Ueda M (2011) Cell suface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9

    Article  CAS  Google Scholar 

  • Kurtzman CP, Fell JW (1998) The yeasts. A taxonomic study, 4th revised and enlarged edn. Elsevier Science, B.V, the Netherlands

    Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, vol 3, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kutty SN, Philp R (2008) Marine yeasts—a review. Yeast 25:465–483

    Article  CAS  Google Scholar 

  • Labarre C, van Tilbeurgh H, Blodeau K (2007) Pichia pastoris is a valuable host for the expression of genes encoding membrane proteins from the hyperthermophilic Archeon Pyrococcus abyssi. Extremophiles 11:403–413

    Article  CAS  Google Scholar 

  • Labuschagne M, Albertyn J (2007) Cloning of an epoxide hydrolase-encoding gene from Rhodotorula mucilaginosa and functional expression in Yarrowia lipolytica. Yeast 24:69–78

    Article  CAS  Google Scholar 

  • Lachance MA (2003) The Phaff school of yeast ecology. Int Microbiol 6:163–167

    Article  Google Scholar 

  • Lachance MA (2007) Current status of Kluyveromyces systematics. FEMS Yeast Res 7:642–645

    Article  CAS  Google Scholar 

  • Lachance MA (2011) Kluyveromyces van der Walt. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts. A taxonomic study, vol 1, 5th edn. Elsevier, Amsterdam, pp 471–481

    Chapter  Google Scholar 

  • Ladisch MR, Kohlmann KL (1992) Recombinant human insulin. Biotechnol Prog 8:469–478

    Article  CAS  Google Scholar 

  • Leher SB, Horner WE, Reese G (1996) Why are some proteins allergenic? Implications for biotechnology. Crit Rev Food Sci Nutr 36:553–564

    Article  Google Scholar 

  • Li PZ, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishan V (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124

    Article  CAS  Google Scholar 

  • Li J, Wang J, Zhang LX, Gu SS, Wu FA, Guo YW (2012) Progress of lipase-catalyzed ester synthesis in ionic liquid. Chinese J Org Chem 32:1186–1194

    Article  CAS  Google Scholar 

  • Liese A, Weelbach K, Wandrey C (2000) Industrial biotransformations, 2nd completely revised and extended edn. WileyVCH Verlag GmbH, Weinheim

    Google Scholar 

  • Lin XR, Heitman J (2006) The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 60:69–105

    Article  CAS  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nature Rev Microbiol 3:510–516

    Article  CAS  Google Scholar 

  • Luque R, Herrero-Davila L, Campelo JM, Clark JH, Hidalgo JM, Luna D, Marinas JM, Romero AA (2008) Biofuels: a technological perspective. Energy Environ Sci 1(5):542–564

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  Google Scholar 

  • Madzak C, Gaillardin C, Beckerich JM (2004) Heterologous protein expression in the non-conventional yeast Yarrowia lipolytica. J Biotechnol 109:63–81

    Article  CAS  Google Scholar 

  • Maggon K (2007) Monoclonal antibody “gold rush”. Curr Med Chem 14:1978–1987

    Article  CAS  Google Scholar 

  • Matsuda T, Yamanaka R, Nakamura K (2009) Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron-Asymmetry 20:513–557

    Article  CAS  Google Scholar 

  • Maugeri F, Hernalsteens S (2007) Screening of yeast strains for transfructoglycosylating activity. J Mol Catal B Enzym 49:43–49

    Article  CAS  Google Scholar 

  • Mosiehl-Jenabian S, Pedersen LL, Jesperen L (2010) Beneficial effects of probiotic and foodborne yeasts on human health. Nutrients 2:449–473

    Article  CAS  Google Scholar 

  • Murphy K, Kavanagh K (1999) Emergence of Saccharomyces as a human pathogen. Implications for biotechnology. Enzyme Microb Technol 25:551–557

    Article  CAS  Google Scholar 

  • Nass LL, Pereira PAA, Ellis D (2007) Biofuels in Brazil: an overview. Crop Sci 47(6):2228–2237

    Google Scholar 

  • Ogata K, Nishikawa H, Ohsugi M (1969) A yeast capable of utilizing methanol. Agric Biol Chem 33:1519

    Article  CAS  Google Scholar 

  • Olemska-Beer ZS, Merker DMD, DiNovi MJ (2006) Food-processing enzymes from recombinant organisms—a review. Regul Toxicol Pharmacol 45:144–158

    Article  CAS  Google Scholar 

  • Oliveira C, Guimaraes PMR, Domingues L (2011) Recombinant microbial systems for improved beta-galactosidase production and biotechnological applications. Biotechnol Adv 29:600–609

    Article  CAS  Google Scholar 

  • Onishi H (1963) Osmophilic yeasts. Adv Food Res 12:53–94. Industrial applications, vol X. In: Esser K, Bennett JW (eds) The Mycota. A comprehensive treatise on fungi as experimental systems for basic and applied research. Springer, Berlin

    Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Bio Rev 64:34–50

    Article  CAS  Google Scholar 

  • Ozkan TB, Sahin E, Edemir G, Budak F (2007) Effect of Saccharomyces boulardii in children with acute gastroenteritis and its relationship to the immune respons. J Int Med Res 35:201–212

    CAS  Google Scholar 

  • Pandey A, Webb C, Coccol CR, Larroche C (2006) Enzyme technology. Springer. Asiatech Publishers, New Delhi

    Google Scholar 

  • Panke S, Held M, Wubbolts M (2004) Trends and innovations in industrial biocatalysis for the production of fine chemicals. Curr Opin Biotechnol 15:272–279

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1052–1073

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part 1I: technology and applications. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312

    Article  CAS  Google Scholar 

  • Pariza MW, Johnson EA (2001) Evaluating the safety of microbial enzyme preparations used in food processing: update for a new century. Regulatory Toxicol Pharmacol 33:173–186

    Article  CAS  Google Scholar 

  • Park YC, Schaffer CEH, Bennett GN (2009) Microbial formation of esters. Appl Microbiol Biotechnol 85:13–25

    Article  CAS  Google Scholar 

  • Patel RN (2004) Biocatalytic synthesis of chiral pharmaceutical intermediates. Food Technol Biotechnol 42:305–325

    CAS  Google Scholar 

  • Patel RN (2007) Biocatalysis: synthesis of chiral intermediates for pharmaceuticals. In: Hou CT, Shaw J-F (eds) Biocatalysis and biotechnology for functional foods and industrial products. CRC Press, Boca Raton, pp 283–322

    Google Scholar 

  • Pavlou A, Reichert J (2005) The therapeutic antibody market to 2008. Eur J Pharm Biopharm 59:389–396

    Article  Google Scholar 

  • Peter G, Dlauchy D, Tornai-Lehoczki J, Gouliamova D, Kurtzman CP (2011) Ogateae saltuana sp. nov., a novel methanol-assimilating yeast species. Antonie Leeuw Int J Gen Molec Biol 100(3):375–383

    Article  CAS  Google Scholar 

  • Plahutaa P, Raspor P (2007) Comparison of hazards: current vs. GMO wine. Food Control 18:492–502

    Article  Google Scholar 

  • Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17:250–255

    Article  CAS  Google Scholar 

  • Porro D, Sauer M, Branduardi P, Mattanovich D (2005) Recombinant protein production in yeasts. Molec Biotechnol 31:245–259

    Article  CAS  Google Scholar 

  • Pretorius IS, Bauer FF (2002) Meeting the consumer challenge through genetically customized yeast strains. Trends Biotechnol 20:426–432

    Article  CAS  Google Scholar 

  • Pretorius IS, du Toit M, Rensburg P (2003) Designer yeasts for the 21st century. Food Technol Biotechnol 41:3–10

    CAS  Google Scholar 

  • Pscheidt B, Glieder A (2008) Yeast cell factories for fine chemical and API production. Microb Cell Factories 7, Article 25. doi:10.1186/1475-2859-7-25

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Ramirez-Orozco M, Hernandez-Saavedra NY, Ochoa J-L (2001) Debaryomyces hansenii growth in nonsterile seawater ClO2-peptone-containing medium. Can J Microbiol 47:676–679

    CAS  Google Scholar 

  • Ratledge C (2002) Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc Trans 30:1047–1050

    Article  CAS  Google Scholar 

  • Rezaei K, Temelli F, Jenab E (2007) Effect of pressure and temperature on enzymatic reactions in supercritical fluids. Biotechnol Adv 25:272–280

    Article  CAS  Google Scholar 

  • Ricca E, Calabro V, Curcio S, Iorio G (2007) The state of the art in the production of fructose from inulin enzymatic hydrolysis. Crit Rev Biotechnol 27:129–145

    Article  CAS  Google Scholar 

  • Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    Article  CAS  Google Scholar 

  • Rozzell JD (1999) Commercial scale biocatalyis: myths and realities. Biorgan Medicin Chem 7:2253–2261

    Article  CAS  Google Scholar 

  • Rubio-Texeira M (2006) Endless versatility in the biotechnological applications of Kluyveromyces LAC genes. Biotechnol Adv 24:210–223

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Indust Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Sandhya C, Pandey A (2006) Inulinases. In: Pandey A, Webb C, Soccol CR, Larroche C (eds) Enzyme technology. Springer-Asiatech Publishers, New Delhi, pp 347–358

    Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2010) 16 years on lactic acid production with yeast—ready for the market? Biotechnol Genet Eng Rev 27:229–256

    CAS  Google Scholar 

  • Sauerwein H, Schmitz S, Hiss S (2007) Effect of a dietary application of a yeast cell wall extract on innate and acquired immunity, on oxidative status and growth performance in weanling piglets and on ileal epithelium in fattened pigs. J Anim Physiol Animal Nutr 91:369–380

    Article  CAS  Google Scholar 

  • Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372

    Article  CAS  Google Scholar 

  • Schuller D, Casal M (2005) The use of genetically modified Saccharomyces cerevisiae strains in the wine industry. Appl Microbiol Biotechnol 68:292–304

    Article  CAS  Google Scholar 

  • Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17:341–346

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Singh RX, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polymers 73:515–531

    Article  CAS  Google Scholar 

  • Siso MIG (1996) The biotechnological utilization of cheese whey: a review. Bioresource Technol 57:1–11

    Article  Google Scholar 

  • Smith RA, Duncan MJ, Moir DT (1985) Heterologous protein secretion from yeast. Science 229:1219–1224

    Article  CAS  Google Scholar 

  • Smith PM, Suphioglu C, Griffith IJ, Theriault K, Knox RB, Singh MB (1996) Cloning and expression in yeast Pichia pastoris of a biologically active form of Cyn d 1, the major allergen of Bermuda grass pollen. J Allergy Clin Immunol 98(2):331–343

    Google Scholar 

  • Sougioultzis S, Simeonidis S, Bhaskar KR, Chen XH, Anton PM, Kkeates S, Pothoulakis C, Kelly CP (2006) Saccharomyces boulardii produces a soluble anti-inflammatory factor that inhibits NK-kappa B-mediated IL-8 gene expression. Biochem Biophys Res Commun 343:69–76

    Article  CAS  Google Scholar 

  • Spencer JFT, Ragout de Spencer AL, Laluce C (2002) Non-conventional yeasts. Appl Microbiol Biotechnol 58:147–156

    Article  CAS  Google Scholar 

  • Spok A (2006) Safety regulations of food enzymes. Food Technol Biotechnol 44:197–209

    CAS  Google Scholar 

  • Sreekrishna K, Kropp KE (1996) Pichia pastoris. In: Wolf K (ed) Nonconventional yeasts in biotechnology. A handbook. Springer, Berlin, pp 203–253

    Chapter  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    Article  CAS  Google Scholar 

  • Stewart JD (1998) Cycloheaxonone monooxygenase: a useful reagent for asymmetric Baeyer-Villiger reactions. Curr Organ Chem 2:195–216

    CAS  Google Scholar 

  • Stewart JD (2006) Genomes as resources for biocatalysis. Adv Appl Microbiol 59:31–52

    Article  CAS  Google Scholar 

  • Straathof AJJ, Adlercreutz P (2000) Applied biocatalysis, 2nd edn. Harwood Scientific Publishers, Amsterdam

    Google Scholar 

  • Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    Article  CAS  Google Scholar 

  • Sturmer R, Breuer M (2006) Enzymes as catalysts - Chemistry and biology hand in hand. Chem Unserer Zeit 40(2):104–111

    Google Scholar 

  • Tanaka A, Ueda M (1993) Assimilation of alkanes by yeasts—functions and biogenesis of peroxisomes. Mycol Res 97:1025–1044

    Article  CAS  Google Scholar 

  • Thim L, Hansen MT, Norris K, Hoegh I, Boel E, Forstrom J, Ammerer G, Fiil NP (1986) Secretion and processing of insulin precursors in yeast. Proc Natl Acad Sci U S A 83:6766–6770

    Article  CAS  Google Scholar 

  • Vakhlu J, Kour A (2006) Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol 9:69–85

    Article  CAS  Google Scholar 

  • Van Beilen JB, Li Z (2002) Enzyme technology: an overview. Curr Opin Biotechnol 13:338–344

    Article  CAS  Google Scholar 

  • van der Walt JP (1970) Kluyveromyces lactis. In: Lodder J (ed) The yeasts, a taxonomic study. North-Holland, Amsterdam, pp 316–378

    Google Scholar 

  • van Maris AJ, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MA, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Ant van Leeuwen 90:391–418

    Article  CAS  Google Scholar 

  • van Ooyen AJJ, Dekker P, Huang M, Osthoorn MM, Jacobs DI, Colussi PA, Taron CH (2006) Heterologous protein production in the yeast Kluveromyces lactis. FEMS Yeast Res 6:381–392

    Article  CAS  Google Scholar 

  • Veenhuis M, Dijken JP, Harder W (1983) The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol 24:1–82

    Article  CAS  Google Scholar 

  • Villarruel G, Rubio DM, Lopez F, Cintioni J, Gurevech R, Romero RG, Vandenplas Y (2007) Saccharomyces boulardii in acute childhood diarrhea: a randomized, placebo controlled study. Acta Paediat 96:538–541

    Article  Google Scholar 

  • Waché Y, Husson G, Feron G, Belin J-M (2006) Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances. Ant van Leeuwen 89:405–416

    Article  Google Scholar 

  • Walker GM (2011) 125th Anniversary review: fule alcohol: currrent production and future challenges. J Inst Brew 117:3–22

    Article  Google Scholar 

  • Walsh G (2003) Pharmaceutical biotechnology products approved within the European Union. Eur J Pharm Biopharm 55(1):3–10

    Google Scholar 

  • Walsh G (2005) Biopharmaceuticals: recent approvals and likely directions. Trends Biotechnol 23(11):553–558

    Google Scholar 

  • Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24:769–776

    Article  CAS  Google Scholar 

  • Weber C, Farwick A, Benisch F, Brat D, Dietz H, Subtil T, Boles E (2010) Trends and challenges in the microbial production of lignocellulosic fuels. Appl Microbiol Biotechnol 87:1303–1315

    Article  CAS  Google Scholar 

  • Wegner GH (1983) Biochemical conversions by yeast fermentation at high cell densities. United States Patent 4:329–414

    Google Scholar 

  • Wegner GH (1990) Emerging applications of the methylotropic yeasts. FEMS Microbiol Rev 87:279–284

    Article  Google Scholar 

  • Wei W, McCusker JH, Hyman RW, Jones T, Ning Y, Cao Z, Zhenglong G, Bruno D, Miranda M, Nguyen M, Wilhelmy J, Komp C, Tamse R, Wang Y, Jia P, Luedi P, Oefner PJ, David L, Dietrich FS, Li Y, Davis RW, Steinmetz LM (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci U S A 104:12825–12830

    Article  CAS  Google Scholar 

  • Wildt S, Gerngross T (2005) The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 3:119–128

    Article  CAS  Google Scholar 

  • Williams NT (2010) Probiotics. Amer J Health-Sys Pharm 67:449–458

    Article  CAS  Google Scholar 

  • Wolf K (ed) (1996) Nonconventional yeasts in bioechnology. Springer, Berlin

    Google Scholar 

  • Woodley JM (2006) Microbial catalytic processes and their development. Adv Appl Microbiol 60:1–15

    Article  CAS  Google Scholar 

  • Yadav JSS, Bezawada J, Yan S, Tyagi RD, Suampalli RY (2012) Candia krusei: biotechnological potential and concerns about its safety. Canad J Microbiol 58:937–952

    Article  CAS  Google Scholar 

  • Yang Z, Pan WB (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enz Microb Technol 37:19–28

    Article  CAS  Google Scholar 

  • Yazbeck DR, Martinez CA, Hu S, Tao J (2004) Challenges in the development of an efficient enzymatic process in the pharmaceutical industry. Tet Asym 15:2757–27643

    Article  CAS  Google Scholar 

  • Ye VM, Bhatia SKL (2012) Metabolic engineering for the production of clinically important molecules: omega-3 fatty acids, artemisinin, and taxol. Biotechnol J 7(SI):20–33

    Article  CAS  Google Scholar 

  • Zelaszcyuk D, Kiec-Kononowicz K (2007) Biocatalytic approach to optically active beta-blockers. Curr Med Chem 14:53–65

    Article  Google Scholar 

  • Zhou JW, Yin XX, Madzak C, Du GC, Chen J (2012) Enhanced alpha-ketoglutarate production in Yarrowia lipolytica WSH-Z06 buy alteration of acetyl-CoA metabolism. J Biotechnol 161:257–264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to acknowledge Professor Herman Jan Phaff (deceased) and Professor Michael J. Lewis and their postodoctoral fellows for encouragment and guidance in working on Phaffia/Xanthopyllomyces over the years. I also thank the students and scientists who have studied this special yeast.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, E.A. Biotechnology of non-Saccharomyces yeasts—the ascomycetes. Appl Microbiol Biotechnol 97, 503–517 (2013). https://doi.org/10.1007/s00253-012-4497-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4497-y

Keywords

Navigation