Skip to main content
Log in

Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

BsEXLX1 from Bacillus subtilis is the first discovered bacterial expansin as a structural homolog of a plant expansin, and it exhibited synergism with cellulase on the cellulose hydrolysis in a previous study. In this study, binding characteristics of BsEXLX1 were investigated using pretreated and untreated Miscanthus x giganteus in comparison with those of CtCBD3, a cellulose-binding domain from Clostridium thermocellum. The amounts of BsEXLX1 bound to cellulose-rich substrates were significantly lower than those of CtCBD3. However, the amounts of BsEXLX1 bound to lignin-rich substrates were much higher than those of CtCBD3. A binding competition assay between BsEXLX1 and CtCBD3 revealed that binding of BsEXLX1 to alkali lignin was not affected by the presence of CtCBD3. This preferential binding of BsEXLX1 to lignin could be related to root colonization in plants by bacteria, and the bacterial expansin could be used as a lignin blocker in the enzymatic hydrolysis of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bak JS, Ko JK, Han YH, Lee BC, Choi I-G, Kim KH (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresour Technol 100:1285–1290

    Article  CAS  Google Scholar 

  • Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J (2005) Weak lignin-binding enzymes—a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl Biochem Biotechnol 121:163–170

    Article  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2000a) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2000b) New genes and new biological roles for expansins. Curr Opin Plant Biol 3:73–78

    Article  CAS  Google Scholar 

  • Cosgrove DJ (2001) Enhancement of accessibility of cellulose by expansins. US Patent 6326470

  • Cosgrove DJ, Takeda T (2007) Use of GR2 proteins to modify cellulosic materials and to enhance enzymatic and chemical modification of cellulose. US Patent 20070166805

  • Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ (2011) Structure–function analysis of the bacterial expansin EXLX1. J Biol Chem 286:16814–16823

    Article  CAS  Google Scholar 

  • Graham JE, Clark ME, Nadler DC, Huffer S, Chokhawala HA, Rowland SE, Blanch HW, Clark DS, Robb FT (2011) Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nat Commun 2:375

    Article  Google Scholar 

  • Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316

    Article  CAS  Google Scholar 

  • Helle SS, Duff SJB, Cooper DG (1993) Effect of surfactants on cellulose hydrolysis. Biotechnol Bioeng 42:611–617

    Article  CAS  Google Scholar 

  • Henshaw JL, Bolam DN, Pires VMR, Czjzek M, Henrissat B, Ferreira LMA, Fontes CMGA, Gilbert HJ (2004) The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities. J Biol Chem 279:21552–21559

    Article  CAS  Google Scholar 

  • Kende H, Bradford KJ, Brummell DA, Cho H-T, Cosgrove DJ, Fleming AJ, Gehring C, Lee Y, McQueen-Mason S, Rose JKC, Voesenek LACJ (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  CAS  Google Scholar 

  • Kerff F, Amoros A, Herman R, Sauvage E, Petrella S, Filée P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci USA 105:16876–16881

    Article  CAS  Google Scholar 

  • Kim ES, Lee HJ, Bang W-G, Choi I-G, Kim KH (2008) A novel cellulase activity enhancing protein from bacillus subtilis, a functional homolog of a plant expansin. J Biotechnol 136S:S426

    Article  Google Scholar 

  • Kim ES, Lee HJ, Bang W-G, Choi I-G, Kim KH (2009) Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose. Biotechnol Bioeng 102:1342–1353

    Article  CAS  Google Scholar 

  • Kim IJ, Ko H-J, Kim T-W, Choi I-G, Kim KH (2012) Characteristics of the binding of a bacterial expansin (BsEXLX1) to microcrystalline cellulose. Biotechnol Bioeng. doi:10.1002/bit.24719

  • Kim KH, Tucker MP, Nguyen QA (2002) Effects of pressing lignocellulosic biomass on sugar yield in two-stage dilute-acid hydrolysis process. Biotechnol Prog 18:489–494

    Article  CAS  Google Scholar 

  • Kim T-W, Chokhawala HA, Hess M, Dana CM, Baer Z, Sczyrba A, Rubin EM, Blanch HW, Clark DS (2011) High-throughput in vitro glycoside hydrolase (HIGH) screening for enzyme discovery. Angew Chem Int Ed 50:11215–11218

    Article  CAS  Google Scholar 

  • Ko JK, Bak JS, Jung MW, Lee HJ, Choi I-G, Kim TH, Kim KH (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour Technol 100:4374–4380

    Article  CAS  Google Scholar 

  • Lynd LR, Laser MS, Brandsby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  Google Scholar 

  • McQueen-Mason S, Cosgrove DJ (1994) Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA 91:6574–6578

    Article  CAS  Google Scholar 

  • McQueen-Mason SJ, Cosgrove DJ (1995) Expansin mode of action on cell walls—analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100

    CAS  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  Google Scholar 

  • Ooshima H, Sakata M, Harano Y (1986) Enhancement of enzymatic hydrolysis of cellulose by surfactant. Biotechnol Bioeng 28:1727–1734

    Article  CAS  Google Scholar 

  • Qin L, Kudla U, Roze EHA, Goverse A, Popeijus H, Nieuwland J, Overmars H, Jones JT, Schots A, Smant G, Bakker J, Helder J (2004) Plant degradation: a nematode expansin acting on plants. Nature 427:30

    Article  CAS  Google Scholar 

  • Quiroz-Castañeda RE, Martínez-Anaya C, Cuervo-Soto LI, Segovia L, Folch-Mallol JL (2011) Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta. Microb Cell Fact 10:8

    Article  Google Scholar 

  • Ruiz R, Ehrman T (1996) Laboratory Analytical Procedure-002: determination of carbohydrates in biomass by high performance liquid chromatography. National Renewable Energy Laboratory, Golden, CO, USA

    Google Scholar 

  • Saloheimo M, Paloheimo M, Hakola S, Pere J, Swanson B, Nyyssönen E, Bhatia A, Ward M, Penttilä M (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269:4202–4211

    Article  CAS  Google Scholar 

  • Suwannarangsee S, Bunterngsook B, Arnthong J, Paemanee A, Thamchaipenet A, Eurwilaichitr L, Laosiripojana N, Champreda V (2012) Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design. Bioresour Technol 119:252–261

    Google Scholar 

  • Tengborg C, Galbe M, Zacchi G (2001) Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microb Technol 28:835–844

    Article  CAS  Google Scholar 

  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751

    CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617

    Article  CAS  Google Scholar 

  • Yennawar NH, Li L-C, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Advanced Biomass R&D Center of Korea (2011-0031353) and the Intelligent Synthetic Biology Center (No. 2011-0031953) funded by the Korean Government (MEST). K.H.K acknowledges financial support from the Energy Biosciences Institute (EBI), Berkeley, CA, USA and I.J.K. is grateful to the instrumental training and technical support provided by Drs. Mara Bryan and Stefan Bauer at the EBI. Facility support at Korea University Food Safety Hall for the Institute of Biomedical Science and Food Safety is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 52.0 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, I.J., Ko, HJ., Kim, TW. et al. Binding characteristics of a bacterial expansin (BsEXLX1) for various types of pretreated lignocellulose. Appl Microbiol Biotechnol 97, 5381–5388 (2013). https://doi.org/10.1007/s00253-012-4412-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4412-6

Keywords

Navigation