Skip to main content
Log in

Biotechnological production of arbutins (α- and β-arbutins), skin-lightening agents, and their derivatives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Arbutins (α- and β-arbutins) are glycosylated hydroquinones that are commercially used in the cosmetic industry. These compounds have an inhibitory function against tyrosinase, a critical enzyme for generating pigments, which leads to the prevention of melanin formation, resulting in a whitening effect on the skin. Although β-arbutin is found in various plants including bearberry, wheat, and pear, α-arbutin and other arbutin derivatives are synthesized by chemical and enzymatic methods. This article presents a mini-review of recent studies on the production of α-arbutin and other α- and β-arbutin derivatives via enzymatic bioconversion methods. In addition, the structures of α- and β-arbutin derivatives and their biological activities are discussed. The catalytic characteristics of various enzymes used in the biosynthesis of arbutin derivatives are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asgharia G, Ihsanpourb A, Akbaria A (2006) Production of arbutin by biotransformation of hydroquinone using Peganum harmala, Varthemia persica and Pycnocycla spinosa cell suspension cultures. Iran J Pharm Sci 2:91–96

    Google Scholar 

  • Barber MS, Giesecke U, Reichert A, Minas W (2004) Industrial enzymatic production of cephalosporin-based β-lactams. In: Brakhage AA (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 179–215

    Google Scholar 

  • Brenner M, Hearing VJ (2008) Modifying skin pigmentation—approaches through intrinsic biochemistry and exogenous agents. Drug Discov Today Dis Mech 5:e189–e199

    Article  Google Scholar 

  • Chang TS (2009) An updated review of tyrosinase inhibitors. Int J Mol Sci 10:2440–2475

    Article  CAS  Google Scholar 

  • Chiku K, Dohi H, Saito A, Ebise H, Kouzai Y, Shinoyama H, Nishida Y, Ando A (2009) Enzymatic synthesis of 4-hydroxyphenyl-d-oligoxylosides and their notable tyrosinase inhibitory activity. Biosci Biotechnol Biochem 73:1123–1128

    Article  CAS  Google Scholar 

  • Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Yoo SH, Cha J, Kim YR, Park CS (2011) Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb Technol 49:246–253

    Article  CAS  Google Scholar 

  • Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994

    Article  CAS  Google Scholar 

  • Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S (1995) Effects of α- and β-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci Biotechnol Biochem 59:143–144

    Article  CAS  Google Scholar 

  • Gillbro JM, Olsson MJ (2011) The melanogenesis and mechanisms of skin-lightening agents—existing and new approaches. Int J Cosmet Sci 33:210–221

    Article  CAS  Google Scholar 

  • Ha SJ, Seo DH, Jung JH, Cha J, Kim TJ, Kim YW, Park CS (2009) Molecular cloning and functional expression of a new amylosucrase from Alteromonas macleodii. Biosci Biotechnol Biochem 73:1505–1512

    Article  CAS  Google Scholar 

  • Hu ZM, Zhou Q, Lei TC, Ding SF, Xu SZ (2009) Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: biosafety as skin whitening agents. J Dermatol Sci 55:179–184

    Article  CAS  Google Scholar 

  • Huang SL, Zhu YL, Pan YJ, Wu SH (2004) Synthesis of arbutin by two-step reaction from glucose. J Zhejiang Univ Sci 5:1509–1511

    Article  CAS  Google Scholar 

  • Inomata S, Yokoyama M, Seto S, Yanagi M (1991) High-level production of arbutin from hydroquinone in suspension cultures of Catharanthus roseus plant cells. Appl Microbiol Biotechnol 36:315–319

    Article  CAS  Google Scholar 

  • Ishihara K, Katsube Y, Kumazawa N, Kuratani M, Masuoka N, Nakajima N (2010) Enzymatic preparation of arbutin derivatives: lipase-catalyzed direct acylation without the need of vinyl ester as an acyl donor. J Biosci Bioeng 109:554–556

    Article  CAS  Google Scholar 

  • Jahodar L, Jilek P, Paktova M, Dvorakova V (1985) Antimicrobial effect of arbutin and an extract of the leaves of Arctostaphylos uva-ursi in vitro. Cesk Farm 34:174–178

    CAS  Google Scholar 

  • Kamakshi R (2012) Fairness via formulations: a review of cosmetic skin-lightening ingredients. J Cosmet Sci 63:43–54

    CAS  Google Scholar 

  • Kang J, Kim YM, Kim N, Kim DW, Nam SH, Kim D (2009) Synthesis and characterization of hydroquinone fructoside using Leuconostoc mesenteroides levansucrase. Appl Microbiol Biotechnol 83:1009–1016

    Article  CAS  Google Scholar 

  • Kim YJ, Uyama H (2005) Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol Life Sci 62:1707–1723

    Article  CAS  Google Scholar 

  • Kim YH, Lee YG, Choi KJ, Uchida K, Suzuki Y (2001) Transglycosylation to ginseng saponins by cyclomaltodextrin glucanotransferases. Biosci Biotechnol Biochem 65:875–883

    Article  CAS  Google Scholar 

  • Kim GE, Lee JH, Jung SH, Seo ES, Jin SD, Kim GJ, Cha J, Kim EJ, Park KD, Kim D (2010) Enzymatic synthesis and characterization of hydroquinone galactoside using Kluyveromyces lactis lactase. J Agric Food Chem 58:9492–9497

    Article  CAS  Google Scholar 

  • Kitao S, Sekine H (1994) α-d-Glucosyl transfer to phenolic compounds by sucrose phosphorylase from Leuconostoc mesenteroides and production of α-arbutin. Biosci Biotechnol Biochem 58:38–42

    Article  CAS  Google Scholar 

  • Kubo I, Kinst-Hori I (1999a) 2-Hydroxy-4-methoxybenzaldehyde: a potent tyrosinase inhibitor from African medicinal plants. Planta Med 65:19–22

    Article  CAS  Google Scholar 

  • Kubo I, Kinst-Hori I (1999b) Flavonols from saffron flower: tyrosinase inhibitory activity and inhibition mechanism. J Agric Food Chem 47:4121–4125

    Article  CAS  Google Scholar 

  • Kubo I, Kinst-Hori I (1999c) Tyrosinase inhibitory activity of the olive oil flavor compounds. J Agric Food Chem 47:4574–4578

    Article  CAS  Google Scholar 

  • Kubo I, Kinst-Hori I, Chaudhuri SK, Kubo Y, Sanchez Y, Ogura T (2000) Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 8:1749–1755

    Article  CAS  Google Scholar 

  • Kubo I, Chen QX, Nihei K, Calderon JS, Cespedes CL (2003) Tyrosinase inhibition kinetics of anisic acid. Z Naturforsch C 58:713–718

    CAS  Google Scholar 

  • Kubo I, Nitoda T, Nihei K (2007) Effects of quercetin on mushroom tyrosinase and B16-F10 melanoma cells. Molecules 12:1045–1056

    Article  CAS  Google Scholar 

  • Kurosu J, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S (2002) Enzymatic synthesis of α-arbutin by α-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. J Biosci Bioeng 93:328–330

    CAS  Google Scholar 

  • Kwak SY, Choi HR, Park KC, Lee YS (2011) Kojic acid-amino acid amide metal complexes and their melanogenesis inhibitory activities. J Pept Sci 17:791–797

    Article  CAS  Google Scholar 

  • Lee HJ, Kim KW (2012) Anti-inflammatory effects of arbutin in lipopolysaccharide-stimulated BV2 microglial cells. Inflamm Res. doi:10.1007/s0001101204742

  • Lee GY, Jung JH, Seo DH, Hansin J, Ha SJ, Cha J, Kim YS, Park CS (2011) Isomaltulose production via yeast surface display of sucrose isomerase from Enterobacter sp. FMB-1 on Saccharomyces cerevisiae. Bioresour Technol 102:9179–9184

    Article  CAS  Google Scholar 

  • Lim JY, Ishiguro K, Kubo I (1999) Tyrosinase inhibitory p-coumaric acid from ginseng leaves. Phytother Res 13:371–375

    Article  CAS  Google Scholar 

  • Maeda K, Fukuda M (1996) Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 276:765–769

    CAS  Google Scholar 

  • Mahmoud ME, Hesham AEL, Ahmed YAG, Sayed M (2010) Inhibition of melanogenesis by the extract from Agaricus blazei without affecting iNOS gene expression. World J Microb Biot 26:2029–2035

    Article  Google Scholar 

  • Mala S, Dvorakova H, Hrabal R, Kralova B (1999) Towards regioselective synthesis of oligosaccharides by use of α-glucosidases with different substrate specificity. Carbohydr Res 322:209–218

    Article  CAS  Google Scholar 

  • Milosavić NB, Prodanović RM, Jankov RM (2007) A simple and efficient one-step, regioselective, enzymatic glucosylation of arbutin by α-glucosidase. Tetrahedron Lett 48:7222–7224

    Article  Google Scholar 

  • Moon Y, Nam S, Kang J, Kim Y-M, Lee J-H, Kang H-K, Breton V, Jun W-J, Park K-D, Kimura A, Kim D (2007) Enzymatic synthesis and characterization of arbutin glucosides using glucansucrase from Leuconostoc mesenteroides B-1299CB. Appl Microbiol Biotechnol 77:559–567

    Article  CAS  Google Scholar 

  • Muto N, Nakamura T, Yamamoto I (1990) Enzymatic formation of a nonreducing l-ascorbic acid α-glucoside: purification and properties of α-glucosidases catalyzing site-specific transglucosylation from rat small intestine. J Biochem 107:222–227

    CAS  Google Scholar 

  • Nakayama H, Okada S, Kometani T, Nishimura T (2002) Skin preparations for external use. European Patent EP 01260211

  • Nazzaro-Porro M, Passi S (1978) Identification of tyrosinase inhibitors in cultures of Pityrosporum. J Invest Dermatol 71:205–208

    Article  CAS  Google Scholar 

  • Nishimura T, Kometani T, Takii H, Terada Y, Okada S (1994) Purification and some properties of α-amylase from Bacillus subtilis X-23 that glucosylates phenolic compounds such as hydroquinone. J Ferment Bioeng 78:31–36

    Article  CAS  Google Scholar 

  • Onodera JI, Takano M, Kishi Y, Yokoyama N, Ishida R (1983) Direct condensation of polyhydric phenols with glucose. Chem Lett 12:1487–1488

    Article  Google Scholar 

  • Parejo I, Viladomat F, Bastida J, Codina C (2001) A single extraction step in the quantitative analysis of arbutin in bearberry (Arctostaphylos uva-ursi) leaves by high-performance liquid chromatography. Phytochem Analysis 12:336–339

    Article  CAS  Google Scholar 

  • Park TH, Choi KW, Park CS, Lee SB, Kang HY, Shon KJ, Park JS, Cha J (2005) Substrate specificity and transglycosylation catalyzed by a thermostable β-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl Microbiol Biotechnol 69:411–422

    Article  CAS  Google Scholar 

  • Park CS, Seo DH, Jung JH, Ha SJ, Cha J, Yoo SH (2010) Method for preparing of α-D-glucopyranosyl-(1 → 4)-arbutin by using amylosucrase from Deinococcus geothermalis Korea Patent 1009416950000

  • Park CS, Seo DH, Jung JH, Ha SJ (2011) Method for production of α-arbutin using amylosucrase Deinococcus geothermalis Korea Patent 1010481480000

  • Parvez S, Kang M, Chung HS, Bae H (2007) Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother Res 21:805–816

    Article  CAS  Google Scholar 

  • Piekoszewska A, Ekiert H, Zubek S (2010) Arbutin production in Ruta graveolens L. and Hypericum perforatum L. in vitro cultures. Acta Physiol Plant 32:223–229

    Article  CAS  Google Scholar 

  • Prodanovic R, Milosavic N, Sladic D, Zlatovic M, Bozic B, Velickovic TC, Vujcic Z (2005) Transglucosylation of hydroquinone catalysed by α-glucosidase from baker’s yeast. J Mol Catal B Enzym 35:142–146

    Article  CAS  Google Scholar 

  • Rigopoulos D, Gregoriou S, Katsambas A (2007) Hyperpigmentation and melasma. J Cosmet Dermatol 6:195–202

    Article  CAS  Google Scholar 

  • Sato T, Hasegawa N, Saito J, Umezawa S, Honda Y, Kino K, Kirimura K (2012) Purification, characterization, and gene identification of an α-glucosyl transfer enzyme, a novel type α-glucosidase from Xanthomonas campestris WU-9701. J Mol Catal B Enzym 80:20–27

    Article  CAS  Google Scholar 

  • Schiraldi C, Di Lernia I, De Rosa M (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20:420–425

    Article  CAS  Google Scholar 

  • Schomburg D, Stephan D (1996) Enzyme handbook: class 2.3. 2-2.4: transferases. Springer, Berlin

    Google Scholar 

  • Seo DH, Jung JH, Ha SJ, Song MC, Cha J, Yoo SH, Kim TJ, Baek NI, Park CS (2009a) Highly selective biotransformation of arbutin to arbutin-α-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J Mol Catal B Enzym 60:113–118

    Article  CAS  Google Scholar 

  • Seo ES, Kang J, Lee JH, Kin GE, Kim GJ, Kim D (2009b) Synthesis and characterization of hydroquinone glucoside using Leuconostoc mesenteroides dextransucrase. Enzyme Microb Technol 45:355–360

    Article  CAS  Google Scholar 

  • Seo SH, Choi KH, Hwang S, Kim J, Park CS, Rho JR, Cha J (2011) Characterization of the catalytic and kinetic properties of a thermostable Thermoplasma acidophilum α-glucosidase and its transglucosylation reaction with arbutin. J Mol Catal B Enzym 72:305–312

    Article  CAS  Google Scholar 

  • Seo DH, Jung JH, Ha SJ, Cho HK, Jung DH, Kim TJ, Baek NI, Yoo SH, Park CS (2012) High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase. Appl Microbiol Biotechnol. doi:10.1007/s0025301239057

  • Shimba N, Shinagawa M, Hoshino W, Yamaguchi H, Yamada N, Suzuki E (2009) Monitoring the hydrolysis and transglycosylation activity of α-glucosidase from Aspergillus niger by nuclear magnetic resonance spectroscopy and mass spectrometry. Anal Biochem 393:23–28

    Article  CAS  Google Scholar 

  • Sugimoto K, Nishimura T, Nomura K, Kuriki T (2003) Syntheses of arbutin-α-glycosides and a comparison of their inhibitory effects with those of α-arbutin and arbutin on human tyrosinase. Chem Pharm Bull 51:798–801

    Article  CAS  Google Scholar 

  • Sugimoto K, Nishimura T, Nomura K, Kuriki T (2004) Inhibitory effects of α-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biol Pharm Bull 27:510–514

    Article  CAS  Google Scholar 

  • Sugimoto K, Nomura K, Nishimura T, Kiso T, Sugimoto K, Kuriki T (2005) Syntheses of α-arbutin-α-glycosides and their inhibitory effects on human tyrosinase. J Biosci Bioeng 99:272–276

    Article  CAS  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754

    Article  CAS  Google Scholar 

  • Tatsuo K, Mitsuo T, Kiyokazu T (1952) Syntheses of glucosides. I. Yakugaku Zasshi 72:13–16

    Google Scholar 

  • Terabayashi Y, Sano M, Yamane N, Marui J, Tamano K, Sagara J, Dohmoto M, Oda K, Ohshima E, Tachibana K, Higa Y, Ohashi S, Koike H, Machida M (2010) Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genet Biol 47:953–961

    Article  CAS  Google Scholar 

  • Tessema E, Cakan N, Kamat D (2007) Hyperpigmentation. Clin Pediatr 46:655–657

    Article  Google Scholar 

  • Tokiwa Y, Kitagawa M, Raku T, Yanagitani S, Yoshino K (2007) Enzymatic synthesis of arbutin undecylenic acid ester and its inhibitory effect on melanin synthesis. Bioorg Med Chem Lett 17:3105–3108

    Article  CAS  Google Scholar 

  • Tonkova A (1998) Bacterial cyclodextrin glucanotransferase. Enzym Microb Technol 22:678–686

    Article  CAS  Google Scholar 

  • Veit T (2004) Biocatalysis for the production of cosmetic ingredients. Eng Life Sci 4:508–511

    Article  CAS  Google Scholar 

  • Wang ZX, Shi XX, Chen GR, Ren ZH, Luo L, Yan J (2006) A new synthesis of α-arbutin via Lewis acid catalyzed selective glycosylation of tetra-O-benzyl-α-d-glucopyranosyl trichloroacetimidate with hydroquinone. Carbohydr Res 341:1945–1947

    Article  CAS  Google Scholar 

  • Wasmeier C, Hume AN, Bolasco G, Seabra MC (2008) Melanosomes at a glance. J Cell Sci 121:3995–3999

    Article  CAS  Google Scholar 

  • Wu PH, Giridhar R, Wu WT (2006) Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of Xanthomonas campestris and its application in glucosylation of hydroquinone. Biotechnol Bioeng 95:1138–1147

    Article  CAS  Google Scholar 

  • Wu PH, Nair G, Chu IM, Wu WT (2008) High cell density cultivation of Escherichia coli with surface anchored transglucosidase for use as whole-cell biocatalyst for α-arbutin synthesis. J Ind Microbiol Biotechnol 35:95–101

    Article  CAS  Google Scholar 

  • Yang RL, Li N, Ye M, Zong MH (2010) Highly regioselective synthesis of novel aromatic esters of arbutin catalyzed by immobilized lipase from Penicillium expansum. J Mol Catal B Enzym 67:41–44

    Article  CAS  Google Scholar 

  • Yoon SH, Robyt JF (2002) Synthesis of acarbose analogues by transglycosylation reactions of Leuconostoc mesenteroides B-512FMC and B-742CB dextransucrases. Carbohydr Res 337:2427–2435

    Article  CAS  Google Scholar 

  • Zhao H, Naito H, Ueda Y, Okada K, Sadagane K, Izumi M, Nakajima S, Baba N (2008) Cyclomaltodextrin glucanotransferase-catalyzed transglycosylation from dextrin to alkanol maltosides. Biosci Biotechnol Biochem 72:3006–3010

    Article  CAS  Google Scholar 

  • Zhu WY, Gao J (2008) The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 13:20–24

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea grant funded by the Korean government (MEST) (No. 2012-0005289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheon-Seok Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, DH., Jung, JH., Lee, JE. et al. Biotechnological production of arbutins (α- and β-arbutins), skin-lightening agents, and their derivatives. Appl Microbiol Biotechnol 95, 1417–1425 (2012). https://doi.org/10.1007/s00253-012-4297-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4297-4

Keywords

Navigation