Skip to main content
Log in

Engineering yeasts for raw starch conversion

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Next to cellulose, starch is the most abundant hexose polymer in plants, an import food and feed source and a preferred substrate for the production of many industrial products. Efficient starch hydrolysis requires the activities of both α-1,4 and α-1,6-debranching hydrolases, such as endo-amylases, exo-amylases, debranching enzymes, and transferases. Although amylases are widely distributed in nature, only about 10 % of amylolytic enzymes are able to hydrolyse raw or unmodified starch, with a combination of α-amylases and glucoamylases as minimum requirement for the complete hydrolysis of raw starch. The cost-effective conversion of raw starch for the production of biofuels and other important by-products requires the expression of starch-hydrolysing enzymes in a fermenting yeast strain to achieve liquefaction, hydrolysis, and fermentation (Consolidated Bioprocessing, CBP) by a single organism. The status of engineering amylolytic activities into Saccharomyces cerevisiae as fermentative host is highlighted and progress as well as challenges towards a true CBP organism for raw starch is discussed. Conversion of raw starch by yeast secreting or displaying α-amylases and glucoamylases on their surface has been demonstrated, although not at high starch loading or conversion rates that will be economically viable on industrial scale. Once efficient conversion of raw starch can be demonstrated at commercial level, engineering of yeast to utilize alternative substrates and produce alternative chemicals as part of a sustainable biorefinery can be pursued to ensure the rightful place of starch converting yeasts in the envisaged bio-economy of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altintas MM, Ülgen KÖ, Kirdar B, Önsan ZI, Oliver SG (2003) Optimal substrate feeding policy for fed-batch cultures of S. cerevisiae expressing bifunctional fusion protein displaying amylolytic activities. Enzyme Microb Technol 33:262–269

    Article  CAS  Google Scholar 

  • Anon (2011) Biofuels. OECD/Food and Agriculture Organization of the United Nations (2011), OECD-FOA Agricultural Outlook 2011-2020. OECD Publishing., pp. 77-93

  • Apiwatanapiwat W, Murata Y, Kosugi A, Yamada R, Kondo A, Arai T, Rugthaworn P, Mori Y (2011) Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase. Appl Microbiol Biotechnol 90:377–384

    Article  CAS  Google Scholar 

  • Ashikari T, Kunisaki S, Matsumoto N, Amachi T, Yoshizumi H (1989) Direct fermentation of raw corn to ethanol by yeast transformants containing a modified Rhizopus glucoamylase gene. Appl Microbiol Biotechnol 32:129–133

    Article  CAS  Google Scholar 

  • Ball SG, Deschamps P (2009) Starch metabolism. In: Stern DB, Harris EHH (eds) The Chlamydomonas sourcebook. Elsevier, Amsterdam, pp 2–40

    Google Scholar 

  • Bamforth CW (2002) Nutritional aspects of beer—a review. Nutr Res 22:227–237

    Article  CAS  Google Scholar 

  • Baylis A (2010) Les Sohettes: a model for integrated biorefineries. Biofuel Bioprod Bior 4:115–117

    Article  CAS  Google Scholar 

  • Belshaw NJ, Williamson G (1993) Specificity of the binding domain of glucoamylase 1. Eur J Biochem 211:717–724

    Article  CAS  Google Scholar 

  • Bothast RJ, Schlicher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 67:19–25

    Article  CAS  Google Scholar 

  • Breuniger WF, Piyachomkwan K, Sriroth K (2009) Tapioca/cassava starch: production and use. In: Whistler R (ed) Starch: Chemistry and technology. Elsevier, Inc., New York, pp 541–568

    Chapter  Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  Google Scholar 

  • Burešová I, Sedláèková I, Famìra O, Lipavský J (2010) Effect of growing conditions on starch and protein content in triticale grain and amylose content in starch. Plant Soil Environ 56:99–104

    Google Scholar 

  • Calvert P (1997) Biopolymers: the structure of starch. Nature 389:338–339

    Article  CAS  Google Scholar 

  • Chen JP, Wu KW, Fukuda H (2008) Bioethanol production from uncooked raw starch by immobilized surface-engineered yeast cells. Appl Biochem Biotechnol 145:59–67

    Article  CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energ Convers Manage 51:1412–1421

    Article  CAS  Google Scholar 

  • Copeland L, Blazek J, Salman H, Tang MC (2009) Form and functionality of starch. Food Hydrocoll 23:1527–1534

    Article  CAS  Google Scholar 

  • Cornett CA, Fang TY, Reilly PJ, Ford C (2003) Starch-binding domain shuffling in Aspergillus niger glucoamylase. Protein Eng 16:521–529

    Article  CAS  Google Scholar 

  • Coutinho PM, Reilly PJ (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins 29:334–347

    Article  CAS  Google Scholar 

  • Daniel JR, Whistler RL, Röper H (2000) Starch. In: Ullmann’s Encyclopedia of Industrial Chemistry, 6th Edition, Electronic Version. John Wiley & Sons, Inc., Weinheim, pp 1–25

  • de Moraes LM, Astolfi-Filho S, Oliver SG (1995) Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express α-amylase and glucoamylase separately or as bifunctional fusion proteins. Appl Microbiol Biotechnol 43:1067–1076

    Article  Google Scholar 

  • de Souza PM, Magalhues PO (2010) Application of microbial α-amylase in industry—a review. Brazilian J Microbiol 41:850–861

    Google Scholar 

  • den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9:87–94

    Article  CAS  Google Scholar 

  • Dohmen RJ, Strasser AW, Dahlems UM, Hollenberg CP (1990) Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95:111–121

    Article  CAS  Google Scholar 

  • Eckhoff SR, Watson SA (2009) Corn and sorghum starches: production. In: Whistler RL, BeMiller J (eds) Starch: chemistry and technology. Elsevier, Inc., Oxford, pp 374–439

    Google Scholar 

  • Eksteen JM, van Rensburg P, Cordero Otero RR, Pretorius IS (2003) Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the α-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol Bioeng 84:639–646

    Article  CAS  Google Scholar 

  • Ellis RP, Cochrane MP, Dale MFB, Duffus CM, Lynn A, Morrison IM, Prentice RDM, Swantson JS, Tiller SA (1998) Starch production and industrial use. J Sci Food Agric 77:289–311

    Article  CAS  Google Scholar 

  • Favaro L, Basaglia M, Saayman M, Rose SFT, van Zyl WH, Casella S (2010) Engineering amylolytic yeasts for industrial bioethanol production. Chem Eng Trans 20:97–102

    Google Scholar 

  • Favaro L, Jooste T, Basaglia M, Rose SH, Saayman M, Görgens JF, Casella S, van Zyl WH (2012) Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4001-8

  • Fierobe HP, Stoffer BB, Frandsen TP, Svensson B (1996) Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Biochemistry 35:8696–8704

    Article  CAS  Google Scholar 

  • Fierobe HP, Clarke AJ, Tull D, Svensson B (1998) Enzymatic properties of the cysteinesulfinic acid derivative of the catalytic-base mutant Glu400 → Cys of glucoamylase from Aspergillus awamori. Biochemistry 37:3753–3759

    Article  CAS  Google Scholar 

  • Frandsen TP, Christensen T, Stoffer B, Lehmbeck J, Dupont C, Honzatko RB, Svensson B (1995) Mutational analysis of the roles in catalysis and substrate recognition of arginines 54 and 305, aspartic acid 309, and tryptophan 317 located at subsites 1 and 2 in glucoamylase from Aspergillus niger. Biochemistry 34:10169

    Article  Google Scholar 

  • French D (1973) Chemical and physical properties of starch. J Anim Sci 37:1048–1061

    CAS  Google Scholar 

  • Fukuda K, Teramoto Y, Goto M, Sakamoto J, Mitsuiki S, Hayashida S (1992) Specific inhibition by cyclodextrins of raw starch digestion by fungal glucoamylase. Biosci Biotechnol Biochem 56:556–559

    Article  CAS  Google Scholar 

  • Galdino AS, Silva RN, Lottermann MT, Alvares AC, de Moraes LM, Torres FA, de Freitas SM, Ulhoa CJ (2011) Biochemical and structural characterization of amy1: an α-amylase from Cryptococcus flavus expressed in Saccharomyces cerevisiae. Enzyme Res 2011:157294

  • Gallezot P (2011) Direct routes from biomass to end-products. Catal Today 167:31–36

    Article  CAS  Google Scholar 

  • Galliard T, Bowler P (1987) Morphology and composition of starch. Crit Rep Appl Chem 13:55–78

    CAS  Google Scholar 

  • Gawande BN, Patkar AY (2001) Purification and properties of a novel raw starch degrading-cyclodextrin glycosyltransferase from Klebsiella pneumonia AS-22. Enzyme Microb Technol 28:735–743

    Article  CAS  Google Scholar 

  • Gawande BN, Goel A, Patkar AY, Nene SN (1999) Purification and properties of a novel raw starch degrading cyclomaltodextrin glucanotransferase from Bacillus firmus. Appl Microbiol Biotechnol 51:504–509

    Article  CAS  Google Scholar 

  • Ghang DM, Yu L, Lim MH, Ko HM, Im SY, Lee HB, Bai S (2007) Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and α-amylase genes from Debaryomyces occidentalis. Biotechnol Lett 29:1203–1208

    Article  CAS  Google Scholar 

  • Gomes I, Gomes J, Steiner W (2003) Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization. Bioresource Technol 90:207–214

    Article  CAS  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  CAS  Google Scholar 

  • Guyot JP (2012) Cereal-based fermented foods in developing countries: ancient foods for modern research. Int J Food Sci Technol. doi:10.1111/j.1365-2621.2012.02969.x

  • Hasegawa K, Kubota M, Matsuura Y (1999) Roles of catalytic residues in a-amylases as evidenced by the structures of the product-complexed mutants of a maltotetraose-forming amylase. Protein Eng 12:819–824

    Article  CAS  Google Scholar 

  • Hasunuma T, Kondo A (2012) Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.10.011

  • Hata Y, Kitamoto K, Gomi K, Kumagai C, Tamura G, Hara S (1991) The glucoamylase cDNA from Aspergillus oryzae: its cloning, nucleotide sequence, and expression in Saccharomyces cerevisiae. Agric Biol Chem 55:941–949

    Article  CAS  Google Scholar 

  • Hatti-Kaul R (2010) Biorefineries—a path to sustainability? Crop Sci 50:S152–S156

    Article  Google Scholar 

  • Hayashida S, Teramoto Y, Kira I (1991) Promotive and inhibitory effects of raw starch adsorbable fragments from pancreatic α-amylase on enzymatic digestions of raw starch. Agric Biol Chem 55:1–6

    Article  CAS  Google Scholar 

  • Hostinova E, Solovicova A, Dvorsky R, Gasperik J (2003) Molecular cloning and 3D structure prediction of the first raw-starch-degrading glucoamylase without a separate starch-binding domain. Arch Biochem Biophys 411:189–195

    Article  CAS  Google Scholar 

  • Huang B, Guo J, Yi B, Yu X, Sun L, Chen W (2008) Heterologous production of secondary metabolites as pharmaceuticals in Saccharomyces cerevisiae. Biotechnol Lett 30:1121–1137

    Article  CAS  Google Scholar 

  • Hutter A, Oliver SG (1998) Ethanol production using nuclear petite yeast mutants. Appl Microbiol Biotechnol 49:511–516

    Article  CAS  Google Scholar 

  • Ilmen M, den Haan R, Brevnova E, McBride J, Wiswall E, Froehlich A, Koivula A, Voutilainen SP, Siika-Aho M, la Grange DC, Thorngren N, Ahlgren S, Mellon M, Deleault K, Rajgarhia V, van Zyl WH, Penttila M (2011) High level secretion of cellobiohydrolases by Saccharomyces cerevisiae. Biotechnol Biofuels 4:30

    Article  CAS  Google Scholar 

  • Jacks AJ, Sorimachi K, Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP (1995) 1H and 15N assignments and secondary structure of the starch-binding domain of glucoamylase from Aspergillus niger. Eur J Biochem 233:568–578

    Article  CAS  Google Scholar 

  • Jane J (2009) Structural features of starch granules ll. In: Whistler RL, BeMiller J (eds) Starch: chemistry and technology. Elsevier, Inc., Oxford, pp 193–236

    Chapter  Google Scholar 

  • Janecek S (1995) Close evolutionary relatedness among functionally distantly related members of the (a/b)8-barrel glycosyl hydrolases suggested by the similarity of their fifth conserved sequence region. FEBS Lett 377:6–8

    Article  CAS  Google Scholar 

  • Janecek S (2002) How many conserved sequence regions are there in the α-amylase family? Biologia 57:29–41

    CAS  Google Scholar 

  • Jespersen L (2003) Occurrence and taxonomic characteristics of strains of Saccharomyces cerevisiae predominant in African indigenous fermented foods and beverages. FEMS Yeast Res 3:191–200

    Article  CAS  Google Scholar 

  • Jin B, van Leeuwen HJ, Patel B, Doelle HW, Yu Q (1999) Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater. Process Biochem 34:59–65

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technol 102:186–193

    Article  CAS  Google Scholar 

  • Kang NY, Park JN, Chin JE, Lee HB, Im SY, Bai S (2003) Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis α-amylase gene. Biotechnol Lett 25:1847–1851

    Article  CAS  Google Scholar 

  • Kennedy JF, Cabral JMS, Sá-Correira I, White CA (1987) Starch biomass: a chemical feedstock for enzyme and fermentation processes. In: Galliard T (ed) Starch: properties and potential. Wiley, New York, pp 115–148

    Google Scholar 

  • Khaw TS, Katakura Y, Koh J, Kondo A, Ueda M, Shioya S (2006) Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol 70:573–579

    Article  CAS  Google Scholar 

  • Kim TG, Kim K (1996) The construction of a stable starch-fermenting yeast strain using genetic engineering and rare-mating. Appl Biochem Biotechnol 59:39–51

    Article  CAS  Google Scholar 

  • Kim MD, Rhee SK, Seo JH (2001) Enhanced production of anticoagulant hirudin in recombinant Saccharomyces cerevisiae by chromosomal δ-integration. J Biotechnol 85:41–48

    Article  CAS  Google Scholar 

  • Kim JH, Kim HR, Lim MH, Ko HM, Chin JE, Lee HB, Kim IC, Bai S (2010) Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, α-amylase and debranching enzyme. Biotechnol Lett 32:713–719

    Article  CAS  Google Scholar 

  • Kim HR, Im YK, Ko HM, Chin JE, Kim IC, Lee HB, Bai S (2011) Raw starch fermentation to ethanol by an industrial distiller's yeast strain of Saccharomyces cerevisiae expressing glucoamylase and α-amylase genes. Biotechnol Lett 33:1643–1648

    Article  CAS  Google Scholar 

  • Klucinec JD, Thompson DB (2002) Amylopectin nature and amylose-to-amylopectin ratio as influences on the behavior of gels of dispersed starch. Cereal Chem 79:24–35

    Article  CAS  Google Scholar 

  • Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H (2002) High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol 58:291–296

    Article  CAS  Google Scholar 

  • Kosugi A, Kondo A, Ueda M, Murata Y, Vaithanomsat P, Thanapase W, Arai T, Mori Y (2009) Production of ethanol from cassava pulp via fermentation with a surface-engineered yeast strain displaying glucoamylase. Renew Energ 34:1354–1358

    Article  CAS  Google Scholar 

  • Kotaka A, Sahara H, Hata Y, Abe Y, Kondo A, Kato-Murai M, Kuroda K, Ueda M (2008) Efficient and direct fermentation of starch to ethanol by sake yeast strains displaying fungal glucoamylases. Biosci Biotechnol Biochem 72:1376–1379

    Article  CAS  Google Scholar 

  • Koutinas AA, Wang R, Kookos IK, Webb C (2003) Kinetic parameters of Aspergillus awamori in submerged cultivations on whole wheat flour under oxygen limiting conditions. Biochem Eng J 16:23–34

    Article  CAS  Google Scholar 

  • Kuriowa T, Shoda H, Ichikawa S, Sato S, Mukataka S (2005) Immobilization and stabilization of pullulanase from Klebsiella pneumonia by a multipoint attachment method using activated agar gel supports. Process Biochem 40:2637–2642

    Article  CAS  Google Scholar 

  • Liao B, Hill GA, Roesler WJ (2010) Amylolytic activity and fermentative ability of Saccharomyces cerevisiae strains that express barley α-amylase. Biochem Eng J 53:63–70

    Article  CAS  Google Scholar 

  • Liao B, Hill GA, Roesler WJ (2012) Stable expression of barley α-amylase in S. cerevisiae for conversion of starch into bioethanol. Biochem Eng J 64:8–16

    Article  CAS  Google Scholar 

  • Lii C-Y, Tsai M-L, Tseng K-H (1996) Effect of amylose content on the rheological property of rice starch. Cereal Chem 73:415–420

    CAS  Google Scholar 

  • Lin LL, Ma YJ, Chien HR, Hsu WH (1998) Construction of an amylolytic yeast by multiple integration of the Aspergillus awamori glucoamylase gene into a Saccharomyces cerevisiae chromosome. Enzyme Microb Technol 23:360–365

    Article  CAS  Google Scholar 

  • Liu Z, Zhang G, Liu S (2004) Constructing an amylolytic brewing yeast Saccharomyces pastorianus suitable for accelerated brewing. J Biosci Bioeng 98:414–419

    CAS  Google Scholar 

  • Liu XF, Wang ZY, Wang JJ, Lu Y, He XP, Zhang BR (2009) Expression of GAI gene and disruption of PEP4 gene in an industrial brewer's yeast strain. Lett Appl Microbiol 49:117–123

    Article  CAS  Google Scholar 

  • Lodolo EJ, Kock JL, Axcell BC, Brooks M (2008) The yeast Saccharomyces cerevisiae—the main character in beer brewing. FEMS Yeast Res 8:1018–1036

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Ma YJ, Lin LL, Chien HR, Hsu WH (2000) Efficient utilization of starch by a recombinant strain of Saccharomyces cerevisiae producing glucoamylase and isoamylase. Biotechnol Appl Biochem 31:55–59

    Article  CAS  Google Scholar 

  • Macgregor AW, Macdougall FH, Mayer C, Daussant J (1984) Changes in levels of α-amylase components in barley tissues during germination and early seedling growth. Plant Physiol 75:203–206

    Article  CAS  Google Scholar 

  • Machovic M, Svensson B, MacGregor EA, Janecek S (2005) A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21. FEBS J 272:5497–5513

    Article  CAS  Google Scholar 

  • Marin D, Jimenez A, Fernandez LM (2001) Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively derived from yeast. FEMS Microbiol Lett 201:249–253

    Article  CAS  Google Scholar 

  • Matsuura Y (2002) A possible mechanism of catalysis involving three essential residues in the enzyme of α-amylase family. Biologia 57:21–27

    CAS  Google Scholar 

  • Miao M, Jiang B, Zhang T (2009) Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohyd Polym 76:214–221

    Article  CAS  Google Scholar 

  • Mitsuiki S, Mukae K, Sakai M, Goto M, Hayashida S, Furukawa K (2005) Comparative characterization of raw starch hydrolyzing amylases from various Bacillus strains. Enzyme Microb Technol 37:410–416

    Article  CAS  Google Scholar 

  • Mukerjea R, Slocum G, Mukerjea R, Robyt JF (2006) Significant differences in the activities of α-amylases in the absence and presence of polyethylene glycol assayed on eight starches solubilised by two methods. Carbohyd Res 341:2049–2054

    Article  CAS  Google Scholar 

  • Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    CAS  Google Scholar 

  • Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A (1999) Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl Microbiol Biotechnol 51:65–70

    Article  CAS  Google Scholar 

  • Nagasaka Y, Kurosawa K, Yokota A, Tomita F (1998) Purification and properties of the raw-starch-digesting glucoamylases from Corticium rolfsii. Appl Microbiol Biotechnol 50:323–330

    Article  CAS  Google Scholar 

  • Nakajima R, Imanaka T, Aiba S (1986) Comparison of amino acid sequences of eleven different α-amylases. Appl Microbiol Biotechnol 23:355–360

    Article  CAS  Google Scholar 

  • Nakamura Y, Kobayashi F, Ohnaga M, Sawada T (1997) Alcohol fermentation of starch by a genetic recombinant yeast having glucoamylase activity. Biotechnol Bioeng 53:21–25

    Google Scholar 

  • Nielsen JE, Borchert TV (2000) Protein engineering of bacterial α-amylases. Biochim Biophys Acta 1543:253–274

    Article  CAS  Google Scholar 

  • Nonato RV, Shishido K (1988) α-factor-directed synthesis of Bacillus stearothermophilus α-amylase in Saccharomyces cerevisiae. Biochem Biophys Res Com 152:76–82

    Article  CAS  Google Scholar 

  • Norouzian D, Akbarzadeh A, Scharer JM, Young MM (2005) Fungal glucoamylases. Biotechnol Adv 24:80–85

    Article  CAS  Google Scholar 

  • Oates CG (1997) Towards an understanding of starch granule structure and hydrolysis. Trends Food Sci Technol 8:375–382

    Article  CAS  Google Scholar 

  • Öner ET (2006) Optimization of ethanol production from starch by an amylolytic nuclear petite Saccharomyces cerevisiae strain. Yeast 23:849–856

    Article  CAS  Google Scholar 

  • Öner ET, Oliver SG, Kirdar B (2005) Production of ethanol from starch by respiration-deficient recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 71:6443–6445

    Article  CAS  Google Scholar 

  • Prakash O, Jaiswal N (2010) α-Amylase: an ideal representative of thermostable enzymes. Appl Biochem Biotechnol 160:2401–2414

    Article  Google Scholar 

  • Preiss J (2009) Biochemistry and molecular biology of starch biosynthesis. In: Whistler RL, BeMiller J (eds) Starch: chemistry and technology. Elsevier, Inc., Oxford, pp 83–147

    Chapter  Google Scholar 

  • Pretorius IS (1997) Utilization of polysaccharides by Saccharomyces cerevisiae. In: Zimmermann FK, Entian KD (eds) Yeast sugar metabolism. Technomic Publishing Company, Lancaster, pp 435–458

    Google Scholar 

  • Puligundla P, Smogrovicova D, Obulam VSR, Ko S (2011) Very high gravity (VHG) ethanolic brewing and fermentation: a research update. J Ind Microbiol Biotechnol 38:1133–1144

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  Google Scholar 

  • Rajagopalan G, Krishnan C (2008) α-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Bioresource Technol 99:3044–3050

    Article  CAS  Google Scholar 

  • Robert X, Haser R, Mori H, Svensson B, Aghajari N (2005) Oligosaccharide binding to barley α-amylase 1. J Biol Chem 280:32968–32978

    Article  CAS  Google Scholar 

  • Robertson GH, Wong DW, Lee CC, Wagschal K, Smith MR, Orts WJ (2006) Native or raw starch digestion: a key step in energy efficient biorefining of grain. J Agric Food Chem 54:353–365

    Article  CAS  Google Scholar 

  • Rothstein SJ, Lahners KN, Lazarus CM, Baulcombe DC, Gatenby AA (1987) Synthesis and secretion of wheat α-amylase in Saccharomyces cerevisiae. Gene 55:353–356

    Article  CAS  Google Scholar 

  • Saha BC, Shen GJ, Srivastava KC, LeCureux LW, Zeikus JG (1989) New thermostable α-amylase like pullulanase from thermophilic Bacillus sp. Enzyme Microb Technol 11:760–764

    Article  CAS  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2010) 16 years research on lactic acid production with yeast—ready for the market? Biotechnol Genet Eng Rev 27:229–256

    CAS  Google Scholar 

  • Shibanuma K, Takeda Y, Hizukuri S, Shibata S (1994) Molecular structures of some wheat starches. Carbohyd Polym 25:111–116

    Article  CAS  Google Scholar 

  • Shibuya I, Tamura G, Shima H, Ishikawa T, Hara S (1992) Construction of an α-amylase/glucoamylase fusion gene and its expression in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 56:884–889

    Article  CAS  Google Scholar 

  • Shigechi H, Uyama K, Fujita Y, Matsumoto T, Ueda M, Tanaka A, Fukuda H, Kondo A (2002) Efficient ethanol production from starch through development of novel flocculent yeast strains displaying glucoamylase and co-displaying or secreting α-amylase. J Mol Catal B-Enzym 17:179–187

    Article  CAS  Google Scholar 

  • Shigechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M, Satoh E, Fukuda H, Kondo A (2004) Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl Environ Microbiol 70:5037–5040

    Article  CAS  Google Scholar 

  • Sierks MR, Svensson B (1994) Protein engineering of the relative specificity of glucoamylase from Aspergillus awamori based on sequence similarities between starch degrading enzymes. Protein Eng 7:1479–1484

    Article  CAS  Google Scholar 

  • Søgaard M, Kadziola A, Haser R, Svensson B (1993) Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley α-amylase 1. J Biol Chem 268:22480–22484

    Google Scholar 

  • Solomon B (1978) Starch hydrolysis by immobilized enzymes/industrial applications. In: Ghose TK, Fiechter A, Blakebrough N (eds) Advances in biochemical engineering. Springer-Verlag, New York, pp 131–177

    Google Scholar 

  • Sorimachi K, Jacks AJ, Gal-Coeffet MF, Williamson G, Archer DB, Williamson MP (1996) Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol 259:970–987

    Article  CAS  Google Scholar 

  • Stevnebo A, Sahlstrom S, Svihus B (2006) Starch structure and degree of starch hydrolysis of small and large strarch granules from barley varieties with varying amylase content. Anim Feed Sci Technol 130:2338

    Article  CAS  Google Scholar 

  • Steyn AJ, Pretorius IS (1991) Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens α-amylase-encoding gene in Saccharomyces cerevisiae. Gene 100:85–93

    Article  CAS  Google Scholar 

  • Steyn AJ, Pretorius IS (1995) Characterization of a novel α-amylase from Lipomyces kononenkoae and expression of its gene (LKA1) in Saccharomyces cerevisiae. Curr Genet 28:526–533

    Article  CAS  Google Scholar 

  • Sun H, Ge X, Wang L, Zhao P, Peng M (2009) Review—microbial production of raw starch digesting enzymes. Afr J Biotechnol 8:1734–1739

    CAS  Google Scholar 

  • Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J, Peng M (2010) Recent advances in microbial raw starch degrading enzymes. Appl Biochem Biotechnol 160:988–1003

    Article  CAS  Google Scholar 

  • Tanaka Y, Ashikari T, Nakamura N, Kiuchi N, Shibano Y, Amachi T, Yoshizumi H (1986) Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric Biol Chem 50:965–969

    Article  CAS  Google Scholar 

  • Tester RF, Karkalas J, Qi X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 39:151–165

    Article  CAS  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9

    Article  CAS  Google Scholar 

  • Ülgen KÖ, Saygili B, Önsan ZI, Kirdar B (2002) Bioconversion of starch into ethanol by a recombinant Saccharomyces cerevisiae strain YPG-AB. Process Biochem 37:1157–1168

    Article  Google Scholar 

  • van der Maarel MJ, van der Veen B, Uitenhaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155

    Article  Google Scholar 

  • van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235

    Google Scholar 

  • Wang J, Wang ZY, He XP, Zhang BR (2010) Construction of amylolytic industrial brewing yeast strain with high glutathione content for manufacturing beer with improved anti-staling capability and flavor. J Microbiol Biotechnol 20:1539–1545

    Article  CAS  Google Scholar 

  • Wankhede DB, Ramteke RS (1982) Synergistic digestibility of several native starches by amylolytic enzymes. Starch-Stärke 34:309–312

    Article  CAS  Google Scholar 

  • Wellisch M, Jungmeier G, Karbowski A, Patel MK, Rogulska M (2010) Biorefinery systems—potential contributors to sustainable innovation. Biofuel Bioprod Bior 4:275–286

    Article  CAS  Google Scholar 

  • Whistler RL, BeMiller JN (1997) Carbohydrate chemistry for food scientists. American Association of Cereal Chemists, Eagen Press, St. Paul

    Google Scholar 

  • Withers SG (2001) Mechanisms of glycosyl transferases and hydrolases. Carbohydr Polym 44:325–337

    Article  CAS  Google Scholar 

  • Wong DWS, Robertson GH (2002) α-Amylases. In: Whitaker JR, Voragen AGJ, Wong DWS (eds) Handbook of food enzymology. CRC Press, New York

    Google Scholar 

  • Wong DW, Batt SB, Lee CC, Wagschal K, Robertson GH (2005) Characterization of active Lentinula edodes glucoamylase expressed and secreted by Saccharomyces cerevisiae. Protein J 24:455–463

    Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Novel strategy for yeast construction using delta-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498

    Article  CAS  Google Scholar 

  • Yamada R, Yamakawa S, Tanaka T, Ogino C, Fukuda H, Kondo A (2011) Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases. Enzyme Microb Technol 48:393–396

    Article  CAS  Google Scholar 

  • Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A (2010) Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol 87:109–115

    Article  CAS  Google Scholar 

  • Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A (2012) Repeated fermentation from raw starch using Saccharomyces cerevisiae displaying both glucoamylase and α-amylase. Enzyme Microb Technol 50:343–347

    Article  CAS  Google Scholar 

  • Yamamoto K, Zhang ZZ, Kobayashi S (2000) Cycloamylose (cyclodextrin) glucanotransferase degrades intact granules of potato raw starch. J Agric Food Chem 48:962–966

    Article  CAS  Google Scholar 

  • Yanez E, Carmona TA, Tiemblo M, Jimenez A, Fernandez-Lobato M (1998) Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion. Biochem J 329:65–71

    CAS  Google Scholar 

  • Yang S, Jia N, Li M, Wang J (2011) Heterologous expression and efficient ethanol production of a Rhizopus glucoamylase gene in Saccharomyces cerevisiae. Mol Biol Rep 38:59–64

    Article  CAS  Google Scholar 

  • Yoon S, Fulton DB, Robyt JF (2007) Formation of covalent β-linked carbohydrate-enzyme intermediates during the reactions catalyzed by α-amylases. Carbohyd Res 342:55–64

    Article  CAS  Google Scholar 

  • Yoshida H, Arai S, Hara KY, Yamada R, Ogino C, Fukuda H, Kondo A (2011) Efficient and direct glutathione production from raw starch using engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 89:1417–1422

    Article  CAS  Google Scholar 

  • You S, Izydorczyk MS (2002) Molecular characteristics of barley starches with variable amylose content. Carbohyd Polym 49:33–42

    Article  CAS  Google Scholar 

  • Zeeman SC, Kossmann J, Smith AM (2010) Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol 61:209–234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. van Zyl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Zyl, W.H., Bloom, M. & Viktor, M.J. Engineering yeasts for raw starch conversion. Appl Microbiol Biotechnol 95, 1377–1388 (2012). https://doi.org/10.1007/s00253-012-4248-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4248-0

Keywords

Navigation