Skip to main content
Log in

A Pseudomonas putida bioreporter for the detection of enzymes active on 2-alkyl-4(1H)-quinolone signalling molecules

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The quorum sensing signalling molecules 2-heptyl-3-hydroxy-4(1H)-quinolone, termed the “Pseudomonas quinolone signal” (PQS), and 2-heptyl-4(1H)-quinolone (HHQ) play an important role in the control of virulence gene expression in Pseudomonas aeruginosa. To construct a bioreporter for the specific and sensitive detection of these compounds, a plasmid with the pqsR gene encoding the PQS- and HHQ-responsive transcriptional regulator PqsR, and with the PqsR-controlled pqsA promoter fused to the lacZ gene, was established in Pseudomonas putida KT2440. The bioreporter responds to HHQ and PQS at concentrations in the range of 0.1–10 and 0.01–5 μM, respectively, with EC50 values of 1.50 ± 0.25 μM for HHQ and 0.15 ± 0.02 μM for PQS. 2,4-Dihydroxyquinoline, a metabolite produced abundantly by P. aeruginosa, did not elicit an increase in reporter enzyme activity. To test whether the bioreporter can be used for the detection of enzymes active on AQ signalling molecules, the hodC gene coding for 2-methyl-3-hydroxy-4(1H)-quinolone 2,4-dioxygenase was expressed in the reporter strain. This dioxygenase catalyses the cleavage of PQS, albeit with very low activity. The response of the bioreporter to PQS was significantly quenched by co-expression of the hodC gene, and HPLC analysis of culture extracts verified that the PQS levels decreased during cultivation. The bioreporter can be applied to screen for AQ-converting enzymes, which will be useful tools to interfere with quorum sensing and thus virulence in P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bredenbruch F, Geffers R, Nimtz M, Buer J, Häussler S (2006) The Pseudomonas aeruginosa quinolone signal (PQS) has iron-chelating activity. Environ Microbiol 8:1318–1329

    Article  CAS  Google Scholar 

  • Cao H, Krishnan G, Goumnerov B, Tsongalis J, Tompkins R, Rahme LG (2001) A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci USA 98:14613–14618

    Article  CAS  Google Scholar 

  • Coleman JP, Hudson LL, McKnight SL, Farrow JM III, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255

    Article  CAS  Google Scholar 

  • Collier DN, Anderson L, McKnight SL, Noah TL, Knowles M, Boucher R, Schwab U, Gilligan P, Pesci EC (2002) A bacterial cell to cell signal in the lungs of cystic fibrosis patients. FEMS Microbiol Lett 215:41–46

    Article  CAS  Google Scholar 

  • Cugini C, Calfee MW, Farrow JM III, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906

    Article  CAS  Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics: a manual for genetic engineering. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Déziel E, Lépine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG (2004) Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344

    Article  Google Scholar 

  • Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, Xiao G, Rahme LG (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55:998–1014

    Article  Google Scholar 

  • Diggle SP, Winzer K, Chhabra SR, Worrall KE, Cámara M, Williams P (2003) The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43

    Article  CAS  Google Scholar 

  • Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, Chhabra SR, Cámara M, Williams P (2006) Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13:701–710

    Article  CAS  Google Scholar 

  • Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M, Williams P (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96

    Article  CAS  Google Scholar 

  • Dong YH, Wang LH, Zhang LH (2007) Quorum-quenching microbial infections: mechanisms and implications. Phil Trans R Soc Lond B Biol Sci 362:1201–1211

    Article  CAS  Google Scholar 

  • Farrow JM III, Sund ZM, Ellison ML, Wade DS, Coleman JP, Pesci EC (2008) PqsE functions independently of PqsR-Pseudomonas quinolone signal and enhances the rhl quorum-sensing system. J Bacteriol 190:7043–7051

    Article  CAS  Google Scholar 

  • Fernández M, Duque E, Pizarro-Tobias P, van Dillewijn P, Wittich RM, Ramos JL (2009) Microbial response to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene. Microb Biotechnol 2:287–294

    Article  Google Scholar 

  • Fernández-Piñar R, Cámara M, Dubern JF, Ramos JL, Espinosa-Urgel M (2011a) The Pseudomonas aeruginosa quinolone quorum sensing signal alters the multicellular behaviour of Pseudomonas putida KT2440. Res Microbiol 162:773–781

    Article  Google Scholar 

  • Fernández-Piñar R, Cámara M, Soriano MI, Dubern JF, Heeb S, Ramos JL, Espinosa-Urgel M (2011b) PpoR, an orphan LuxR-family protein of Pseudomonas putida KT2440, modulates competitive fitness and surface motility independently of N-acylhomoserine lactones. Environ Microbiol Rep 3:79–85

    Article  Google Scholar 

  • Fletcher MP, Diggle SP, Crusz SA, Chhabra SR, Cámara M, Williams P (2007) A dual biosensor for 2-alkyl-4-quinolone quorum-sensing signal molecules. Environ Microbiol 9:2683–2693

    Article  CAS  Google Scholar 

  • Frerichs-Deeken U, Ranguelova K, Kappl R, Hüttermann J, Fetzner S (2004) Dioxygenases without requirement for cofactors, and their chemical model reaction: Compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion. Biochemistry 43:14485–14499

    Article  CAS  Google Scholar 

  • Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480

    Article  CAS  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622

    CAS  Google Scholar 

  • Grant SG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645–4649

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Hays EE, Wells IC, Katzman PA, Cain CK, Jacobs FA, Thayer SA, Doisy EA, Gaby WL, Roberts EC, Muir RD, Carroll CJ, Jones LR, Wade NJ (1945) Antibiotic substances produced by Pseudomonas aeruginosa. J Biol Chem 159:725–750

    CAS  Google Scholar 

  • Hazan R, He J, Xiao G, Dekimpe V, Apidianakis Y, Lesic B, Astrakas C, Déziel E, Lépine F, Rahme LG (2010) Homeostatic interplay between bacterial cell–cell signaling and iron in virulence. PLoS Pathog 6(3):e1000810

    Article  Google Scholar 

  • Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184:1046–1056

    Article  CAS  Google Scholar 

  • Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35:247–274

    Article  CAS  Google Scholar 

  • Iwasaki K, Uchiyama H, Yagi O, Kurabayashi T, Ishizuku K, Takamura Y (1994) Transformation of Pseudomonas putida by electroporation. Biosci Biotechnol Biochem 58:851–854

    Article  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  Google Scholar 

  • Lamarche MG, Déziel E (2011) MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline). PLoS One 6(9):e24310

    Article  CAS  Google Scholar 

  • Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926

    Article  CAS  Google Scholar 

  • Lee SJ, Gralla JD (2001) Sigma38 (rpoS) RNA polymerase promoter engagement via −10 region nucleotides. J Biol Chem 276:30064–30071

    Article  CAS  Google Scholar 

  • Lee J, Attila C, Cirillo SLG, Cirillo JD, Wood TK (2009) Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol 2:75–90

    Article  CAS  Google Scholar 

  • Lee Y, Yeom J, Kim J, Jung J, Jeon CO, Park W (2010) Phenotypic and physiological alterations by heterologous acylhomoserine lactone synthase expression in Pseudomonas putida. Microbiology 156:3762–3772

    Article  CAS  Google Scholar 

  • Leisinger T, Margraff R (1979) Secondary metabolites of the fluorescent pseudomonads. Microbiol Rev 43:422–442

    CAS  Google Scholar 

  • Lépine F, Déziel E, Milot S, Rahme LG (2003) A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta 1622:36–41

    Article  Google Scholar 

  • Lépine F, Dekimpe V, Lesic B, Milot S, Lesimple A, Mamer OA, Rahme LG, Déziel E (2007) PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis. Biol Chem 388:839–845

    Article  Google Scholar 

  • Lu C, Kirsch B, Zimmer C, de Jong JC, Henn C, Maurer CK, Müsken M, Häussler S, Steinbach A, Hartmann RW (2012) Discovery of antagonists of PqsR, a key player in 2-alkyl-4-quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 19:381–390

    Article  CAS  Google Scholar 

  • Martinez A, Kolvek SJ, Yip CLT, Hopke J, Brown KA, MacNeil IA, Osburne MS (2004) Genetically modified bacterial strains and novel bacterial artificial chromosome shuttle vectors for constructing environmental libraries and detecting heterologous natural products in multiple expression hosts. Appl Environ Microbiol 70:2452–2463

    Article  CAS  Google Scholar 

  • McGrath S, Wade DS, Pesci EC (2004) Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230:27–34

    Article  CAS  Google Scholar 

  • Michael JP (2007) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 24:223–246

    Article  CAS  Google Scholar 

  • Michael JP (2008) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 25:166–187

    Article  CAS  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VA, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen JA, Timmis KN, Düsterhöft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  Google Scholar 

  • Niewerth H, Bergander K, Chhabra SR, Williams P, Fetzner S (2011) Synthesis and biotransformation of 2-alkyl-4(1H)-quinolones by recombinant Pseudomonas putida KT2440. Appl Microbiol Biotechnol 91:1399–1408

    Article  CAS  Google Scholar 

  • Ortori CA, Dubern JF, Chhabra SR, Cámara M, Hardie K, Williams P, Barrett DA (2011) Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4(1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Anal Bioanal Chem 399:839–850

    Article  CAS  Google Scholar 

  • Parschat K, Overhage J, Strittmatter AW, Henne A, Gottschalk G, Fetzner S (2007) Complete nucleotide sequence of the 113-kilobase linear catabolic plasmid pAL1 of Arthrobacter nitroguajacolicus Rü61a and transcriptional analysis of genes involved in quinaldine degradation. J Bacteriol 189:3855–3867

    Article  CAS  Google Scholar 

  • Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, Iglewski BH (1999) Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96:11229–11234

    Article  CAS  Google Scholar 

  • Pini C, Godoy P, Bernal P, Ramos JL, Segura A (2011) Regulation of the cyclopropane synthase cfaB gene in Pseudomonas putida KT2440. FEMS Microbiol Lett 321:107–114

    Article  CAS  Google Scholar 

  • Pustelny C, Albers A, Büldt-Karentzopoulos K, Parschat K, Chhabra SR, Cámara M, Williams P, Fetzner S (2009) Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa. Chem Biol 16:1259–1267

    Article  CAS  Google Scholar 

  • Que YA, Hazan R, Ryan CM, Milot S, Lépine F, Lydon M, Rahme LG (2011) Production of Pseudomonas aeruginosa intercellular small signaling molecules in human burn wounds. J Pathog Article ID 549302. doi:10.4061/2011/549302

  • Rampioni G, Pustelny C, Fletcher MP, Wright VJ, Bruce M, Rumbaugh KP, Heeb S, Cámara M, Williams P (2010) Transcriptomic analysis reveals a global alkyl-quinolone-independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environ Microbiol 12:1659–1673

    CAS  Google Scholar 

  • Roca A, Rodriguez-Herva JJ, Duque E, Ramos JL (2008) Physiological responses of Pseudomonas putida to formaldehyde during detoxification. Microb Biotechnol 1:158–169

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Santos PM, Di Bartolo I, Blatny JM, Zennaro E, Valla S (2001) New broad-host-range promoter probe vectors based on the plasmid RK2 replicon. FEMS Microbiol Lett 195:91–96

    Article  CAS  Google Scholar 

  • Schertzer JW, Boulette ML, Whiteley M (2009) More than a signal: non-signaling properties of quorum sensing molecules. Trends Microbiol 17:189–195

    Article  CAS  Google Scholar 

  • Schertzer JW, Brown SA, Whiteley M (2010) Oxygen levels rapidly modulate Pseudomonas aeruginosa social behaviours via substrate limitation of PqsH. Mol Microbiol 77:1527–1538

    Article  CAS  Google Scholar 

  • Steiner RA, Janßen HJ, Roversi P, Oakley AJ, Fetzner S (2010) Structural basis for cofactor-independent dioxygenation of N-heteroaromatic compounds at the α/β hydrolase fold. Proc Natl Acad Sci USA 107:657–662

    Article  CAS  Google Scholar 

  • Tashiro Y, Toyofuku M, Nakajima-Kambe T, Uchiyama H, Nomura N (2010) Bicyclic compounds repress membrane vesicle production and Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. FEMS Microbiol Lett 301:123–130

    Article  Google Scholar 

  • Wade DS, Calfee MW, Rocha ER, Ling EA, Engstrom E, Coleman JP, Pesci EC (2005) Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380

    Article  CAS  Google Scholar 

  • Wells IC (1952) Antibiotic substances produced by Pseudomonas aeruginosa. Syntheses of Pyo Ib, Pyo Ic, and Pyo III. J Biol Chem 196:331–340

    CAS  Google Scholar 

  • Xiao G, Déziel E, He J, Lépine F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, Stachel SE, Rahme LG (2006a) MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands. Mol Microbiol 62:1689–1699

    Article  CAS  Google Scholar 

  • Xiao G, He J, Rahme LG (2006b) Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 152:1679–1686

    Article  CAS  Google Scholar 

  • Yu S, Jensen V, Seeliger J, Feldmann I, Weber S, Schleicher E, Häussler S, Blankenfeldt W (2009) Structure elucidation and preliminary assessment of hydrolase activity of PqsE, the Pseudomonas quinolone signal (PQS) response protein. Biochemistry 48:10298–10307

    Article  CAS  Google Scholar 

  • Zhang XG, Bremer H (1995) Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem 270:11181–11189

    Article  CAS  Google Scholar 

  • Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571

    Article  CAS  Google Scholar 

  • Zhang YM, Frank MW, Zhu K, Mayasundari A, Rock CO (2008) PqsD is responsible for the synthesis of 2,4-dihydroxyquinoline, an extracellular metabolite produced by Pseudomonas aeruginosa. J Biol Chem 283:28788–28794

    Article  CAS  Google Scholar 

  • Zor T, Selinger Z (1996) Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem 236:302–308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Dr. Paul Williams and Dr. Stephan Heeb, University of Nottingham, UK, for providing the pME6032 vector, and Prof. Dr. Svein Valla, Norwegian University of Science and Technology, Trondheim, Norway, for the gift of plasmid pPR9TT. We also thank Olha Schneider (Münster) for help in β-galactosidase experiments, Sven Thierbach (Münster) for help in determination of kinetic parameters of HodC and data analysis, and Heiko Niewerth (Münster) for devising the HPLC protocol and for critical reading of the manuscript. This work was supported, in part, by the German Research Foundation (DFG, grant FE 383/16-1 to S.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Fetzner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, C., Fetzner, S. A Pseudomonas putida bioreporter for the detection of enzymes active on 2-alkyl-4(1H)-quinolone signalling molecules. Appl Microbiol Biotechnol 97, 751–760 (2013). https://doi.org/10.1007/s00253-012-4236-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4236-4

Keywords

Navigation