Skip to main content
Log in

Biodiscovery from rare actinomycetes: an eco-taxonomical perspective

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial natural products, in particular, the ones produced by the members of the order Actinomycetales, will continue to represent an important route to the discovery of novel classes of bioactive compounds. As a result, the search for and discovery of lesser-known and/or novel actinomycetes is of significant interest to the industry due to a growing need for the development of new and potent therapeutic agents, mainly against drug resistant bacteria. Current advancements in genomics and metagenomics are adding strength to the target-directed search for detection and isolation of bioactive actinomycetes. New discoveries, however, will only stem from a sound understanding and interpretation of knowledge derived from conventional studies conducted since the discovery of streptomycin, on the ecology, taxonomy, physiology and metabolism of actinomycetes, and from a combination of this knowledge with currently available and continuously advancing molecular tools. Such a powerful information platform will then inevitably reveal the whereabouts, taxonomical and chemical identities of previously undetected bioactive actinomycetes including novel species of streptomycetes as potential producers of novel drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alain K, Querellou J (2009) Cultivating the uncultured: limits, advances and future challenges. Extremophiles 13:583–594

    Article  Google Scholar 

  • Asolkar R, Kirkland TN, Jensen PR, Fenical W (2010) Arenimycin, an antibiotic effective against rifampin- and methicillin-resistant Staphylococcus aureus from the marine actinomycete Salinispora arenicola. J Antibiot (Tokyo) 63(1):37–39

    Article  CAS  Google Scholar 

  • Baltz RH (2005) Antibiotic discovery from actinomycetes: will a renaissance follow the decline and fall? SIM News 55(5):186–196

    Google Scholar 

  • Baltz RH (2006a) Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration. J Ind Microbiol Biotech 33:507–513

    Article  CAS  Google Scholar 

  • Baltz RH (2006b) Combinatorial biosynthesis of novel antibiotics and other secondary metabolites in actinomycetes. SIM News 56:148–160

    Google Scholar 

  • Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563

    Article  CAS  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    Article  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chem Bio Chem 3:619–627

    CAS  Google Scholar 

  • Bull AT (ed) (2004) Microbial diversity and bioprospecting. ASM Press, Washington

    Google Scholar 

  • Bull AT (2007) Alice in Actinoland, and looking glass tales. SIM News 57(6):225–234

    Google Scholar 

  • Bull AT (2010) Actinobacteria of the extremobiosphere. In: Horikoshi K, Antranikian G, Bull AT, Robb F, Stelter K (eds) Extremophiles handbook. Springer-Verlag GmbH, Berlin

    Google Scholar 

  • Bull AT, Stach JEM (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15(11):491–499

    Article  CAS  Google Scholar 

  • Bull AT, Ward AC, Goodfellow M (2000) Search and discovery strategies for biotechnology: the paradigm shift. Microbiol Mol Biol R 64:573–606

    Article  CAS  Google Scholar 

  • Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153

    Article  CAS  Google Scholar 

  • Butler MS, Buss AD (2006) Natural products—the future scaffolds for novel antibiotics? Biochem Pharmacol 71:919–929

    Article  CAS  Google Scholar 

  • Capon RJ (2010) Marine natural products chemistry: past, present, and future. Aust J Chem 63:851–854

    Article  CAS  Google Scholar 

  • Challis GL (2008) Genome mining for novel natural product discovery. J Med Chem 51:2618–2628

    Article  CAS  Google Scholar 

  • Challis GL, Ravel J (2000) Coelichelin, a new peptide siderophore encoded by the Streptomyces coelicolor genome: structure prediction from the sequence of its non-ribosomal peptide synthetase. FEMS Microbiol Lett 187(2):111–114

    Article  CAS  Google Scholar 

  • Chater KF (2006) Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Phil Trans R Soc B 361:761–768

    Article  CAS  Google Scholar 

  • Chopra I, Hesse L, O’Neill AJ (2002) Exploiting current understanding of antibiotic action for discovery of new drugs. J Appl Microbiol Symp Suppl 92:4S–15S

    Google Scholar 

  • Davies J (2006) Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol 33:496–499

    Article  CAS  Google Scholar 

  • DeLong EF (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469

    Article  CAS  Google Scholar 

  • Donadio S (2010) Antibiotic discovery in the twenty-first century: current trends and future perspectives. J Antibiot 63:423–430

    Article  CAS  Google Scholar 

  • Dunlap WC, Jaspars M, Hranueli D, Battershill CN, Peric-Concha N, Zucko J, Wright SH, Long PF (2006) New methods for medicinal chemistry—universal gene cloning and expression systems for production of marine bioactive metabolites. Curr Med Chem 13:697–710

    Article  CAS  Google Scholar 

  • Ellen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nat Rev Microbiol 3:489–498

    Article  Google Scholar 

  • Ferrari BC, Winsley T, Gillings M, Binnerup S (2008) Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nat Protoc 3:1261–1269

    Article  CAS  Google Scholar 

  • Fiedler H-P, Bruntner C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones AL, Maldonado L, Pathom-aree W, Beil W, Schneider K, Keller S, Süssmuth RD (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61:158–163

    Article  CAS  Google Scholar 

  • Firn RD, Jones CG (2000) The evolution of secondary metabolism—a unifying model. Mol Microbiol 37(5):989–994

    Article  CAS  Google Scholar 

  • Fujimori DG, Hrvatin S, Neumann CS, Strieker M, Mohamed A, Marahiel MA, Christopher T, Walsh CT (2007) Cloning and characterization of the biosynthetic gene cluster for Kutznerides. Proc Natl Acad Sci 104(42):16498–16503

    Article  Google Scholar 

  • Gavrish E, Bollmann A, Epstein S, Lewis K (2008) A trap for in situ cultivation of filamentous actinobacteria. J Microbiol Methods 72(3):257–262

    Article  CAS  Google Scholar 

  • Genilloud O, González I, Salazar O, Martín J, Tormo JR, Vicente F (2011) Current approaches to exploit actinomycetes as a source of novel natural products. J Ind Microbiol Biotechnol 38:375–389

    Article  CAS  Google Scholar 

  • Glöckner FO, Joint I (2010) Marine microbial genomics in Europe: current status and perspectives. Microb Biotechnol 3:523–530

    Article  Google Scholar 

  • Goodfellow M (2010) Selective isolation of Actinobacteria. In: Section 1: Bull AT, Davies JE (section eds) Isolation and screening of secondary metabolites and enzymes. Manual of industrial microbiology and biotechnology (Baltz RH, Davies J, Demain AL, eds), Washington: ASM Press, pp.13-27

  • Goodfellow M, Fiedler H-P (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek 98:119–142

    Article  Google Scholar 

  • Goodfellow M, Williams E (1986) New strategies for the selective isolation of industrially important bacteria. Biotechnol Genet Eng Rev 4:213–262

    CAS  Google Scholar 

  • Handelsman J. (2004) Soils—the metagenomics approach. In: Bull AT (ed) Microbial diversity and bioprospecting, ASM Press, pp.109-119

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249

    Article  Google Scholar 

  • Hayakawa M (2008) Studies on the isolation and distribution of rare actinomycetes in soil. Actinomycetologica 22:12–19

    Article  Google Scholar 

  • Heidelberg KB, Gilbert JA, Joint I (2010) Marine genomics: at the interface of marine microbial ecology and biodiscovery. Microb Biotech 3(5):531–543

    Article  CAS  Google Scholar 

  • Hopwood DA (2006) Soil to genomics: the Streptomyces chromosome. Annu Rev Genet 40:1–23

    Article  CAS  Google Scholar 

  • Hornung A, Bertazzo M, Dziarnowski A, Schneider K, Welzel K, Wohlert S-E, Holzenkaempfer M, Nicholson GJ, Bechthold A, Suessmuth RD, Vente A, Pelzer SA (2007) Genomic screening approach to the structure-guided identification of drug candidates from natural sources. Chem Bio Chem 8:757–766

    CAS  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotech 21:526–531

    Article  Google Scholar 

  • Janso JE, Carter GT (2010) Biosynthetic potential of phylogenetically unique endophytic actinomycetes from tropical plants. Appl Environ Microbiol 76(13):4377–4386

    Article  CAS  Google Scholar 

  • Jensen PR (2010) Linking species concepts to natural product discovery in the post-genomic era. J Ind Microbiol Biotechnol 37:219–224

    Article  CAS  Google Scholar 

  • Jensen PR, Lauro FM (2008) An assessment of actinobacterial diversity in the marine environment. Antonie Van Leeuwenhoek 94:51–62

    Article  CAS  Google Scholar 

  • Jensen PR, Mafnas C (2006) Biogeography of the marine actinomycete Salinispora. Environ Microbiol 8:1881–1888

    Article  CAS  Google Scholar 

  • Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W (2005a) Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol 7:1039–1048

    Article  Google Scholar 

  • Jensen PR, Mincer TJ, Williams PG, Fenical W (2005b) Marine actinomycete diversity and natural product discovery. Antonie Van Leeuwenhoek 87:43–48

    Article  CAS  Google Scholar 

  • Jensen PR, Williams PG, Oh CD, Zeigker L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152

    Article  CAS  Google Scholar 

  • Joint I, Mühling M, Querellou J (2010) Culturing marine bacteria—an essential prerequisite for biodiscovery. Marine Biotechnology (In: Giuliano L, Barbier M, Briand F (eds) Special Issue: Marine Omics), 3(5):564-575

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  Google Scholar 

  • Kellenberger E, Hofmann A, Quinn RJ (2011) Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs. Nat Prod Rep 28:1483–1492

    Article  CAS  Google Scholar 

  • Kennedy J, Marchesi JR, Dobson ADW (2007) Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl Microbiol Biotechnol 75:11–20

    Article  CAS  Google Scholar 

  • Kim TK, Hewavitharana AK, Shaw PN, Fuerst JA (2006) Discovery of a new source of rifamycin antibiotics in marine sponge actinobacteria by phylogenetic prediction. Appl Environ Microbiol 72:2118–2125

    Article  CAS  Google Scholar 

  • Konstantinidis K, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    Article  CAS  Google Scholar 

  • Konstantinidis KT, Tiedje JM (2007) Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol 10:504–509

    Article  CAS  Google Scholar 

  • Kurtböke DI (ed) (2003) Selective isolation of rare actinomycetes. Queensland Complete Printing Services, Nambour, Queensland, Australia

    Google Scholar 

  • Kurtböke DI (2009) Use of phage-battery to isolate industrially important rare actinomycetes. In: Adams HT (ed) Contemporary trends in bacteriophage research. NOVA Science, New York, pp 79–117

    Google Scholar 

  • Kurtböke DI (2010a) Biodiscovery from microbial resources: Actinomycetes leading the way. Microbiol Aust 31(2):53–57

    Google Scholar 

  • Kurtböke DI (2010b) Bacteriophages as tools in drug discovery programs. Microbiol Aust 31(2):67–70

    Google Scholar 

  • Kurtböke DI (2011) Exploitation of phage battery in the search for bioactive actinomycetes. Appl Microbiol Biotechnol (2011) 89:931-937

    Google Scholar 

  • Kurtböke DI, French JRJ (2007) Use of phage battery to investigate the actinofloral layers of termite-gut microflora. J Appl Microbiol 103(3):722–734

    Article  Google Scholar 

  • Lang G, Mayhudin NA, Maya I, Mitova MI, Sun L, Sun L, van der Sar S, Blunt JW, Cole AJL, Ellis G, Laatsch H, Munro MHG (2008) Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 71:1595–1599

    Article  CAS  Google Scholar 

  • Martin R, Sterner O, Alvarez MA, deClercq E, Bailey JE, Minas W (2001) Collinone, a new recombinant angular polyketide antibiotic made by an engineered Streptomyces strain. J Antibiot (Tokyo) 54(3):239–249

    CAS  Google Scholar 

  • McLeod MP, Warren H, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanih M, Hara H, Petrescu A, Morin RD, Yang G, Scott JM, Schein JE, Shin H, Smalius D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD (2006) The complete genome of Rhodococcus RHA 1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci 103:15582–15587

    Article  Google Scholar 

  • Metsä-Ketelä M, Halo L, Munukka E, Hakala J, Mäntsälä P, Ylihonko K (2002) Molecular evolution of aromatic polyketides and comparative sequence analysis of polyketide ketosynthase and 16S ribosomal DNA genes from various Streptomyces species. Appl Environ Microbiol 68(9):4472–4479

    Article  Google Scholar 

  • Mills SD (2003) The role of genomics in antimicrobial discovery. J Antimicrob Chemoth 51:749–752

    Article  CAS  Google Scholar 

  • Nett M, Ikeda H, Moore B (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26(11):1362–1384

    Article  CAS  Google Scholar 

  • Olano C, Méndez C, Salas JA (2011) Molecular insights on the biosynthesis of antitumour compounds by actinomycetes. Microb Biotech 4(2):144–164

    Article  CAS  Google Scholar 

  • Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadley PJ (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL 23338. Nat Biotechnol 25:447–453

    Article  CAS  Google Scholar 

  • Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shibai T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci 98:12215–12220

    Article  Google Scholar 

  • Palmu K, Ishida K, Mantsala P, Hertweck C, Metsa-Ketela M (2007) Artificial reconstruction of two cryptic angucycline antibiotic biosynthetic pathways. Chem Bio Chem 8:1577–1584

    CAS  Google Scholar 

  • Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discover 6:29–40

    Article  CAS  Google Scholar 

  • Penn K, Jenkins C, Nett M, Udwary DW, Gontang EA, McGlinchey RP, Foster B, Lapidus A, Podell S, Allen EE (2009) Genomic islands link secondary metabolism to functional adaptation in marine actinomycetes. ISMEJ 3:1193–1203

    Article  CAS  Google Scholar 

  • Qin S, Xing K, Jiang J-H, Xu L-H, Li W-J (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    Article  CAS  Google Scholar 

  • Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: Genomic analysis of microbial communities. Annu Rev Genet 38:525–552

    Article  CAS  Google Scholar 

  • Sánchez C, Butovich IA, Braña AF, Rohr J, Méndez C, Salas JA (2002) The biosynthetic gene cluster for the antitumor rebeccamycin: characterization and generation of indolocarbazole derivatives. Chem Biol 9:519–531

    Article  Google Scholar 

  • Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229–232

    Article  Google Scholar 

  • Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  CAS  Google Scholar 

  • Stach JEM, Bull AT (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie Van Leeuwenhoek 87:3–9

    Article  Google Scholar 

  • Stach JE, Maldonado LA, Ward AC, Goodfellow M, Bull AT (2003) New primers for the class Actinobacteria: application to marine and terrestrial environments. Environ Microbiol 5:828–841

    Article  CAS  Google Scholar 

  • Stackebrandt E (2011) Molecular taxonomic parameters. Microbiol Aust 32(2):59–61

    Google Scholar 

  • Tiwari K, Gupta RK (2011) Rare actinomycetes: a potential storehouse for novel antibiotics. Crit Rev Biotechnol 2011:1–25

    Article  Google Scholar 

  • Turner WB (1973) Secondary metabolism with special reference to Actinomycetales. Soc Appl Microbiol Symp Ser 2:209–217

    CAS  Google Scholar 

  • Udwary DW, Ziegler L, Asolbar HN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complete secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381

    Article  CAS  Google Scholar 

  • Udwary DW, Gontang EA, Jones AC, Jones CS, Schultz AW, Winter JM, Yang JY, Beauchemin N, Capson TL, Clark BR, Esquenazi E, Eustáquio AS, Freel K, Gerwick L, Gerwick WH, Gonzalez D, Liu WT, Malloy KL, Maloney KN, Nett M, Nunnery JK, Penn K, Prieto-Davo A, Simmons TL, Weitz S, Wilson MC, Tisa LS, Dorrestein PC, Moore BS (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol 77(11):3617–3625

    Article  CAS  Google Scholar 

  • Vaishnav P, Demain AL (2010) Unexpected applications of secondary metabolites. Biotechnol Adv 29:223–229

    Article  Google Scholar 

  • Van Lanen SG, Shen B (2006) Microbial genomics for the improvement of natural product discovery. Curr Opin Microbiol 9:252–260

    Article  Google Scholar 

  • Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309:1–7

    CAS  Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007) Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71(3):495–548

    Article  CAS  Google Scholar 

  • Vickers JC, Williams ST, Ross GW (1984) A taxonomic approach to selective isolation of streptomycetes from soil. In: Ortiz-Ortiz L, Bojalil LF, Yakoleff V (eds) Biological, biochemical and biomedical of actinomycetes. Academic Press, London, pp 553–561

    Google Scholar 

  • Ward A, Bora N (2006) Diversity and biogeography of marine actinobacteria. Curr Opin Microbiol 9:279–286

    Article  CAS  Google Scholar 

  • Ward A, Goodfellow M (2004) Taxonomy as a roadmap for search and biodiscovery. Microbiol Aust 25:13–15

    Google Scholar 

  • Watve MG, Tickoo R, Jog MM, Behole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390

    Article  CAS  Google Scholar 

  • Wellington EMH, Berry A, Krsek M (2003) Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6:295–301

    Article  CAS  Google Scholar 

  • Wilkinson B, Micklefield J (2007) Mining and engineering natural-product biosynthetic pathways. Nat Chem Biol 3(7):379–386

    Article  CAS  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983a) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  Google Scholar 

  • Williams ST, Goodfellow M, Wellington EMH, Vickers JC, Alderson G, Sneath PHA, Sackin MJ, Mortimer AM (1983b) A probability matrix for the identification of streptomycetes. J Gen Microbiol 129:1815–1830

    CAS  Google Scholar 

  • Williams ST, Vickers JC, Goodfellow M (1984) New microbes from old habitats? In: Kelly DP, Carr NG (eds) The microbe 1984, II: prokaryotes and eukaryotes. Cambridge University Press, Cambridge, pp 219–256

    Google Scholar 

  • Wink J (2011) How can actinomycete taxonomy and natural product research work together? The Sanofi–Aventis approach. Microbiol Aust 32(2):81–85

    Google Scholar 

  • Xu J (2006) Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances. Mol Ecol 15:1713–1731

    Article  CAS  Google Scholar 

  • Zak JC, Willing MR, Moorhead DL, Wildman HG (1994) Functional diversity of microbial communities: a quantitative approach. Soil Biol Biochem 26(9):1101–1108

    Article  Google Scholar 

  • Zhou J, Kang S, Schadt CW, Garten CT Jr (2008) Spatial scaling of functional gene diversity across various microbial taxa. PNAS 105(22):7768–7773

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Ken Wasmund for the construction of phylogenetic tree for the isolate USC-633.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. İ. Kurtböke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurtböke, D.İ. Biodiscovery from rare actinomycetes: an eco-taxonomical perspective. Appl Microbiol Biotechnol 93, 1843–1852 (2012). https://doi.org/10.1007/s00253-012-3898-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3898-2

Keywords

Navigation