Skip to main content

Advertisement

Log in

Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Knowledge about methanotrophs and their activities is important to understand the microbial mediation of the greenhouse gas CH4 under climate change and human activities in terrestrial ecosystems. The effects of simulated warming and sheep grazing on methanotrophic abundance, community composition, and activity were studied in an alpine meadow soil on the Tibetan Plateau. There was high abundance of methanotrophs (1.2–3.4 × 108 pmoA gene copies per gram of dry weight soil) assessed by real-time PCR, and warming significantly increased the abundance regardless of grazing. A total of 64 methanotrophic operational taxonomic units (OTUs) were obtained from 1,439 clone sequences, of these OTUs; 63 OTUs (98.4%) belonged to type I methanotrophs, and only one OTU was Methylocystis of type II methanotrophs. The methanotroph community composition and diversity were not apparently affected by the treatments. Warming and grazing significantly enhanced the potential CH4 oxidation activity. There were significantly negative correlations between methanotrophic abundance and soil moisture and between methanotrophic abundance and NH4–N content. The study suggests that type I methanotrophs, as the dominance, may play a key role in CH4 oxidation, and the alpine meadow has great potential to consume more CH4 under future warmer and grazing conditions on the Tibetan Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abell GCJ, Stralis-Pavese N, Sessitsch A, Bodrossy L (2009) Grazing affects methanotroph activity and diversity in an alpine meadow soil. Environ Microbiol Rep 1:457–465

    Article  CAS  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  CAS  Google Scholar 

  • Börjesson G, Sundh I, Tunlid A, Frostegard A, Svensson BH (1998) Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol Ecol 26:207–217

    Article  Google Scholar 

  • Börjesson G, Sundh I, Svensson B (2004) Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol Ecol 48:305–312

    Article  Google Scholar 

  • Bremner JM (1996) Nitrogen—total. In: Sparks DL (ed) Methods of soil analysis: Part 3—chemical methods, Vol. 37. Soil Science Society of America, American Society of Agronomy, Madison, pp 1085–1121

    Google Scholar 

  • Cao GM, Xu XL, Long RJ, Wang QL, Wang CT, Du YG, Zhao XQ (2008) Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biol Lett 4:681–684

    Article  CAS  Google Scholar 

  • Chen Y, Dumont MG, Cebron A, Murrell JC (2007) Identification of active methanotrophs in a landfill cover soil through detection of expression of 16S rRNA and functional genes. Environ Microbiol 9:2855–2869

    Article  CAS  Google Scholar 

  • Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074

    CAS  Google Scholar 

  • Degelmann DM, Borken W, Drake HL, Kolb S (2010) Different atmospheric methane-oxidizing communities in European beech and Norway spruce soils. Appl Environ Microbiol 76:3228–3235

    Article  CAS  Google Scholar 

  • Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou SB, Ly B, Saw JH, Zhou ZM, Ren Y, Wang JM, Mountain BW, Crowe MA, Weatherby TM, Bodelier PLE, Liesack W, Feng L, Wang L, Alam M (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–882

    Article  CAS  Google Scholar 

  • Einola JKM, Kettunen RH, Rintala JA (2007) Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biol Biochem 39:1156–1164

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    CAS  Google Scholar 

  • Holmes AJ, Roslev P, McDonald IR, Iversen N, Henriksen K, Murrell JC (1999) Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl Environ Microbiol 65:3312–3318

    CAS  Google Scholar 

  • Horz HP, Rich V, Avrahami S, Bohannan BJM (2005) Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol 71:2642–2652

    Article  CAS  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001) Climate change 2001: the scientific basis. Third IPCC Report. Cambridge University Press, Cambridge

    Google Scholar 

  • Hu YG, Chang XF, Lin XW, Wang YF, Wang SP, Duan JC, Zhang ZH, Yang XX, Luo CY, Xu GP, Zhao XQ (2010) Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan Plateau. Soil Biol Biochem 42:944–952

    Article  CAS  Google Scholar 

  • IPCC (2007) Summary for policymakers. Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 539–543

    Google Scholar 

  • Islam T, Jensen S, Reigstad LJ, Larsen Ø, Birkeland NK (2008) Methane oxidation at 55°C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci U S A 105:300–304

    Article  CAS  Google Scholar 

  • Kimball BA, Conley MM, Wang SP, Lin XW, Luo CY, Morgan J, Smith D (2008) Infrared heater arrays for warming ecosystem field plots. Glob Change Biol 14:309–320

    Article  Google Scholar 

  • King GM (1997) Responses of atmospheric methane consumption by soils to global climate change. Glob Change Biol 3:351–362

    Article  Google Scholar 

  • Klein JA, Harte J, Zhao XQ (2005) Dynamic and complex microclimate responses to warming and grazing manipulations. Glob Change Biol 11:1440–1451

    Article  Google Scholar 

  • Knief C, Lipski A, Dunfield PF (2003) Diversity and activity of methanotrophic bacteria in different upland soils. Appl Environ Microbiol 69:6703–6714

    Article  CAS  Google Scholar 

  • Knoblauch C, Zimmermann U, Blumenberg M, Michaelis W, Pfeiffer EM (2008) Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biol Biochem 40:3004–3013

    Article  CAS  Google Scholar 

  • Kolb S (2009) The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep 1:336–346

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Le Roux X, Poly F, Currey P, Commeaux C, Hai B, Nicol GW, Prosser JI, Schloter M, Attard E, Klumpp K (2008) Effects of aboveground grazing on coupling among nitrifier activity, abundance and community structure. ISME J 2:221–232

    Article  Google Scholar 

  • Liebner S, Wagner D (2007) Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ Microbiol 9:107–117

    Article  CAS  Google Scholar 

  • Luesken FA, Zhu BL, van Alen TA, Butler MK, Diaz MR, Song B, Op den Camp HJM, Jetten MSM, Ettwig KF (2011) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 77:3877–3880

    Article  CAS  Google Scholar 

  • Luo CY, Xu GP, Wang YF, Wang SP, Lin XW, Hu YG, Zhang ZH, Chang XF, Duan JC, Su AL, Zhao XQ (2009) Effects of grazing and experimental warming on DOC concentrations in the soil solution on the Qinghai-Tibet plateau. Soil Biol Biochem 41:2493–2500

    Article  CAS  Google Scholar 

  • Luo CY, Xu GP, Chao ZG, Wang SP, Lin XW, Hu YG, Zhang ZH, Duan JC, Chang XF, Su AL, Li YN, Zhao XQ, Du MY, Tang YH, Kimball B (2010) Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan plateau. Glob Change Biol 16:1606–1617

    Article  Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Google Scholar 

  • Martineau C, Whyte LG, Greer CW (2010) Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Appl Environ Microbiol 76:5773–5784

    Article  CAS  Google Scholar 

  • McDonald IR, Bodrossy L, Chen Y, Murrell JC (2008) Molecular ecology techniques for the study of aerobic methanotrophs. Appl Environ Microbiol 74:1305–1315

    Article  CAS  Google Scholar 

  • Menyailo OV, Hungate BA, Abraham WR, Conrad R (2008) Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob Change Biol 14:2405–2419

    Article  Google Scholar 

  • Mohanty SR, Bodelier PLE, Conrad R (2007) Effect of temperature on composition of the methanotrophic community in rice field and forest soil. FEMS Microbiol Ecol 62:24–31

    Article  CAS  Google Scholar 

  • Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306

    Article  CAS  Google Scholar 

  • Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MSM, Op den Camp HJM (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878

    Article  CAS  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. Available at http://www.R-project.org

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  CAS  Google Scholar 

  • Semrau JD (2011) Current knowledge of microbial community structures in landfills and its cover soils. Appl Microbiol Biotechnol 89:961–969

    Article  CAS  Google Scholar 

  • Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34:496–531

    CAS  Google Scholar 

  • Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  Google Scholar 

  • Singleton DR, Furlong MA, Rathbun SL, Whitman WB (2001) Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

  • Theisen AR, Ali MH, Radajewski S, Dumont MG, Dunfield PF, McDonald IR, Dedysh SN, Miguez CB, Murrell JC (2005) Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2. Mol Microbiol 58:682–692

    Article  CAS  Google Scholar 

  • Thompson LG, Yao T, Mosley-Thompson E, Davis ME, Henderson KA, Lin PN (2000) A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores. Science 289:1916–1919

    Article  CAS  Google Scholar 

  • Urmann K, Lazzaro A, Gandolfi I, Schroth MH, Zeyer J (2009) Response of methanotrophic activity and community structure to temperature changes in a diffusive CH4/O2 counter gradient in an unsaturated porous medium. FEMS Microbiol Ecol 69:202–212

    Article  CAS  Google Scholar 

  • Vorob’ev AV, Baani M, Doronina NV, Brady AL, Liesack W, Dunfield PF, Dedysh SN (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium possessing only a soluble methane monooxygenase. Int J Syst Evol Microbiol. doi:10.1099/ijs.0.028118-0

  • Wang ZP, Ineson P (2003) Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biol Biochem 35:427–433

    Article  CAS  Google Scholar 

  • Wang GX, Wang YB, Li YS, Cheng HY (2007) Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. Catena 70:506–514

    Article  Google Scholar 

  • Wang YL, Wu WX, Ding Y, Liu W, Perera A, Chen YX, Devare M (2008) Methane oxidation activity and bacterial community composition in a simulated landfill cover soil is influenced by the growth of Chenopodium album L. Soil Biol Biochem 40:2452–2459

    Article  CAS  Google Scholar 

  • Wang SP, Yang XX, Lin XW, Hu YG, Luo CY, Xu GP, Zhang ZH, Su AL, Chang XF, Chao ZG, Duan JC (2009) Methane emission by plant communities in an alpine meadow on the Qinghai-Tibetan Plateau: a new experimental study of alpine meadows and oat pasture. Biol Lett 5:535–538

    Article  CAS  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Wu YB, Tan HC, Deng YC, Wu J, Xu XL, Wang YF, Tang YH, Higashi T, Cui XY (2010) Partitioning pattern of carbon flux in a Kobresia grassland on the Qinghai-Tibetan Plateau revealed by field 13C pulse-labeling. Glob Change Biol 16:2322–2333

    Article  Google Scholar 

  • Yamulki S, Jarvis SC, Owen P (1998) Nitrous oxide emissions from excreta applied in a simulated grazing pattern. Soil Biol Biochem 30:491–500

    Article  CAS  Google Scholar 

  • Yrjälä KIM, Tuomivirta T, Juottonen H, Putkinen A, Lappi K, Tuittila E, Penttilä T, Minkkinen K, Laine J, Peltoniemi K, Fritze H (2011) CH4 production and oxidation processes in a boreal fen ecosystem after long-term water table drawdown. Glob Change Biol 17:1311–1320

    Article  Google Scholar 

  • Zhang F, She YH, Zheng Y, Zhou ZF, Kong SQ, Hou DJ (2010) Molecular biologic techniques applied to the microbial prospecting of oil and gas in the Ban 876 gas and oil field in China. Appl Microbiol Biotechnol 86:1183–1194

    Article  CAS  Google Scholar 

  • Zhao XQ, Zhou XM (1999) Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio 28:642–647

    Google Scholar 

  • Zhao L, Li YN, Xu SX, Zhou HK, Gu S, Yu GR, Zhao XQ (2006) Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Glob Change Biol 12:1940–1953

    Article  Google Scholar 

  • Zheng Y, Zhang LM, Zheng YM, Di HJ, He JZ (2008) Abundance and community composition of methanotrophs in a Chinese paddy soil under long-term fertilization practices. J Soils Sediments 8:406–414

    Article  CAS  Google Scholar 

  • Zheng Y, Liu XZ, Zhang LM, Zhou ZF, He JZ (2010) Do land utilization patterns affect methanotrophic communities in a Chinese upland red soil? J Environ Sci 22:1936–1943

    Article  Google Scholar 

  • Zhou HK, Zhao XQ, Tang YH, Gu S, Zhao L (2005) Alpine grassland degradation and its control in the source region of Yangtze and Yellow rivers, China. Grassland Sci 51:191–203

    Article  Google Scholar 

  • Zhou XQ, Wang YF, Huang XZ, Tian JQ, Hao YB (2008) Effect of grazing intensities on the activity and community structure of methane-oxidizing bacteria of grassland soil in Inner Mongolia. Nutr Cycl Agroecosyst 80:145–152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the grant of the Knowledge Innovation Program of Chinese Academy of Sciences (no. KSCX2-YW-Z-1020), the Natural Science Foundation of China (no. 41001149), and the National Basic Research Program (2010CB833502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Dong Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 50.5 kb)

ESM 2

(DOC 83.5 kb)

ESM 3

(DOC 63 kb)

ESM 4

(DOC 122 kb)

ESM 5

(DOC 31.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Y., Yang, W., Sun, X. et al. Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau. Appl Microbiol Biotechnol 93, 2193–2203 (2012). https://doi.org/10.1007/s00253-011-3535-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3535-5

Keywords

Navigation