Skip to main content

Advertisement

Log in

Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Plant growth-promoting rhizobacteria (PGPR) increase the viability and health of host plants when they colonize roots and engage in associative symbiosis (Bashan et al. 2004). In return, PGPR viability is increased by host plant roots by the provision of nutrients and a more protective environment (Richardson et al. in Plant Soil 321:305–339, 2009). The PGPR have great potential in agriculture since the combination of certain microorganisms and plants can increase crop production and increase protection against frost, salinity, drought and other environmental stresses such as the presence of xenobiotic pollutants. But there is a great challenge in combining plants and microorganisms without compromising the viability of either microorganisms or seeds. In this paper, we review how anhydrobiotic engineering can be used for the formulation of biotechnological tools that guarantee the supply of both plants and microorganisms in the dry state. We also describe the application of this technology for the selection of desiccation-tolerant PGPR for polycyclic aromatic hydrocarbons bioremediation, in soils subjected to seasonal drought, by the rhizoremediation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adams DO, Yang SF (1979) Ethylene biosynthesis - identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci U S A 76:170–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54:876–886

    Article  CAS  PubMed  Google Scholar 

  • Albareda M, Rodriguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Albareda M, Rodriguez-Navarro DN, Temprano FJ (2009) Soybean inoculation: dose, N fertilizer supplementation and rhizobia persistence in soil. Field Crop Res 113:352–356

    Article  Google Scholar 

  • Ali B, Sabri AN, Hasnain S (2010) Rhizobacterial potential to alter auxin content and growth of Vigna radiata (L.). World J Microbiol Biotechnol 26:1379–1384

    Article  CAS  Google Scholar 

  • Andersen KS, Winding A (2004) Non-target effects of bacterial biological control agents on soil Protozoa. Biol Fertil Soils 40:230–236

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Baek SO, Field RA, Goldstone ME, Kirk PW, Lester JN, Perry R (1991) A review of atmospheric polycyclic aromatic-hydrocarbons—sources, fate and behavior. Water Air Soil Pollut 60:279–300

    Article  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biol Fertil Soils 35:359–368

    Article  Google Scholar 

  • Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bayliss C, Bent E, Culham DE, MacLellan S, Clarke AJ, Brown GL, Wood JM (1997) Bacterial genetic loci implicated in the Pseudomonas putida GR12-2R3-canola mutualism: identification of an exudate-inducible sugar transporter. Can J Microbiol 43:809–818

    Article  CAS  PubMed  Google Scholar 

  • Ben Rebah F, Prevost D, Yezza A, Tyagi RD (2007) Agro-industrial waste materials and wastewater sludge for rhizobial inoculant production: a review. Bioresource Technology 98:3535–3546

    Article  CAS  PubMed  Google Scholar 

  • Ben Rebah F, Tyagi RD, Prevost D (2002) Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Bioresource Technology 83:145–151

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signaling. New Phytol 181:413–423

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Kang LH, Dell B (2006) Inoculation of Eucalyptus urophylla with spores of Scleroderma in a nursery in south China: comparison of field soil and potting. Forest Ecol Manag 222:439–449

    Article  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens. Annu Rev Phytopathol 31:53–80

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove L, McGeechan PL, Handley PS, Robson GD (2010) Effect of biostimulation and bioaugmentation on degradation of polyurethane buried in soil. Appl Environ Microbiol 76:810–819

    Article  CAS  PubMed  Google Scholar 

  • Crowe LM, Crowe JH (1992) Anhydrobiosis: a strategy for survival. Adv Space Res 12:239–247

    Article  CAS  PubMed  Google Scholar 

  • Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. International Biodeterioration & Biodegradation 54:167–174

    Article  CAS  Google Scholar 

  • Dary M, Chamber-Perez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology 101:1611–1627

    Article  CAS  PubMed  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2007) Desiccation tolerance of rhizobia when protected by synthetic polymers. Soil Biol Biochem 39:573–580

    Article  CAS  Google Scholar 

  • Dimkpa C, Svatos A, Merten D, Buchel G, Kothe E (2008) Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54:163–172

    Article  CAS  PubMed  Google Scholar 

  • Duffy B, Keel C, Defago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244

    Article  PubMed  Google Scholar 

  • Elmerich CN, WE (2007) Associative and endophytic nitrogen-fixing bacteria and cyanobacterial associations. Springer, The Netherlands

  • Fages J (1992) An industrial view of Azospirillum inoculants—formulation and application technology. Symbiosis 13:15–26

    Google Scholar 

  • Ferreira JS, Baldani JI, Baldani VLD (2010) Selection of peats inoculants with diazotrophic bacteria in two rice varieties. Acta Sci Agron 32:179–185

    Google Scholar 

  • Ferro AM, Sims RC, Bugbee B (1994) Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23:272–279

    Article  CAS  PubMed  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant-growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li JP (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng ZY, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Guimaraes BCM, Arends JBA, van der Ha D, Van de Wiele T, Boon N, Verstraete W (2010) Microbial services and their management: recent progresses in soil bioremediation technology. Applied Soil Ecology 46:157–167

    Article  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent Pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Herridge DF (2007) Inoculation technology for legumes. Nitrogen-fixing leguminous symbioses 7:77–115

    Article  Google Scholar 

  • Hinton HE (1968) Reversible suspension of metabolism and origin of life. Proc Biol Sci 171:43–57

    CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004a) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  CAS  PubMed  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004b) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  PubMed  Google Scholar 

  • Jackson MB, Campbell DJ (1976) Waterlogging and petiole epinasty in tomato—role of ethylene and low oxygen. New Phytol 76:21–29

    Article  CAS  Google Scholar 

  • Jousset A, Lara E, Wall LG, Valverde C (2006) Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol 72:7083–7090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Keilin D (1959) The Leeuwenhoek lecture—the problem of anabiosis or latent life—history and current concept. Proc Biol Sci 150:149–191

    CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 14:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Lipton DS, Blanchar RW, Blevins DG (1987) Citrate, malate, and succinate concentration in exudates from p-sufficient and p-stressed Medicago sativa l seedlings. Plant Physiol 85:315–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CH, Wu JY, Chang JS (2008) Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules. Bioresource Technology 99:1904–1910

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  CAS  PubMed  Google Scholar 

  • MacMillan J (2002) Occurrence of gibberellins in vascular plants, fungi, and bacteria. J Plant Growth Regul 21:242–243

    Article  CAS  Google Scholar 

  • Manzanera M, Aranda-Olmedo I, Ramos JL, Marques S (2001) Molecular characterization of Pseudomonas putida KT2440 rpoH gene regulation. Microbiology 147:1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Manzanera M, de Castro AG, Tondervik A, Rayner-Brandes M, Strom AR, Tunnacliffe A (2002) Hydroxyectoine is superior to trehalose for anhydrobiotic engineering of Pseudomonas putida KT2440. Appl Environ Microbiol 68:4328–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzanera M, Narvaez-Reinaldo JJ, SantaCruz-Calvo L, Vilchez JI, Gonzalez-Lopez J, Calvo C (2010) New isolation method of desiccation-tolerant microorganisms for the bioremediation of arid and semiarid soils. In: Popov V, Brebia CA (eds) Environmental toxicology III. Wessex Institute of Technology, Southampton, pp 121–130

    Google Scholar 

  • Manzanera M, Vilchez S, Tunnacliffe A (2004a) High survival and stability rates of Escherichia coli dried in hydroxyectoine. FEMS Microbiol Lett 233:347–352

    Article  CAS  PubMed  Google Scholar 

  • Manzanera M, Vilchez S, Tunnacliffe A (2004b) Plastic encapsulation of stabilized Escherichia coli and Pseudomonas putida. Appl Environ Microbiol 70:3143–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques S, Manzanera M, Gonzalez-Perez MM, Ruiz R, Ramos JL (1999) Biodegradation, plasmid-encoded catabolic pathways, host factors and cell metabolism. Environ Microbiol 1:103–104

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530

    Article  CAS  Google Scholar 

  • Molina L, Ramos C, Duque E, Ronchel MC, Garcia JM, Wyke L, Ramos JL (2000) Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem 32:315–321

    Article  CAS  Google Scholar 

  • Muleta D, Assefa F, Granhall U (2007) In vitro antagonism of rhizobacteria isolated from Coffea arabica L. against emerging fungal coffee pathogens. Eng Life Sci 7:577–586

    Article  CAS  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  CAS  Google Scholar 

  • Narvaez-Reinaldo JJ, Barba I, Gonzalez-Lopez J, Tunnacliffe A, Manzanera M (2010) Rapid method for isolation of desiccation-tolerant strains and xeroprotectants. Appl Environ Microbiol 76:5254–5262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto KF, Frankenberger WT Jr (1990) Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the growth of Raphanus sativus. Plant Soil 127:147–156

    Article  CAS  Google Scholar 

  • Nikolaou K, Masclet P, Mouvier G (1984) Sources and chemical-reactivity of polynuclear aromatic-hydrocarbons in the atmosphere—a critical-review. Sci Total Environ 32:103–132

    Article  CAS  Google Scholar 

  • Ortíz-Castro R, Valencia-Cantero E, López-Bucio J (2008) Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav 3:263–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Patten C, Glick BR (1996) Bacterial biosynthesis on indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133

    Article  CAS  PubMed  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Poll 137:187–197

    Article  CAS  Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potts M (1996) The anhydrobiotic cyanobacterial cell. Physiol Plantarum 97:788–794

    Article  CAS  Google Scholar 

  • Qiu X, Shah SI, Kendall EW, Sorensen DL, Sims RC, Engelke MC (1994) Grass-enhanced bioremediation for clay soils contaminated with polynuclear aromatic-hydrocarbons. Bioremediation through Rhizosphere Technology 563:142–157

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Nisha MC, Prabu PC, Wondimu L, Selvaraj T (2009) Interaction between glomus geosporum, Azotobacter chroococcum, and Bacillus coagulans and their influence on growth and nutrition of Melia azedarach l. Turk J Biol 33:109–114

    CAS  Google Scholar 

  • Rajkumar M, Lee KJ, Lee WH, Banu JR (2005) Growth of Brassica juncea under chromium stress: Influence of siderophores and indole 3 acetic acid producing rhizosphere bacteria. J Environ Biol 26:693–699

    CAS  PubMed  Google Scholar 

  • Ramos-Solano B, García JAL, Garcia-Villaraco A, Algar E, Garcia-Cristobal J, Mañero FJG (2010) Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L. Plant Soil 334:189–197

    Article  CAS  Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    Article  CAS  PubMed  Google Scholar 

  • Remans R, Snoeck C, Luyten E, Dobbelaere S, Somers E, Croonenborghs A, Michiels J, Vanderleyden J (2005) Microbial inoculants: a challenge to tune the microbial metabolites and signals for plant responsiveness in the field. In: Wang YP, Lin M, Tian ZX, Elmerich C, Newton WE (eds) Biological nitrogen fixation, sustainable agriculture and the environment. Springer, Dordrecht, pp 265–267

    Chapter  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Rodriguez-Salazar J, Suarez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296:52–59

    Article  CAS  PubMed  Google Scholar 

  • Rovira AD, Newman EI, Bowen HJ, Campbell R (1974) Quantitative assessment of rhizoplane microflora by direct microscopy. Soil Biol Biochem 6:211–216

    Article  Google Scholar 

  • Sabannavar SJ, Lakshman HC (2008) Interactions between Azotobacter, Pseudomonas and arbuscular mycorrhizal fungi on two varieties of Sesamum indicum L. J Agron Crop Sci 194:470–478

    Google Scholar 

  • Salimpour S, Khavazi K, Nadian H, Besharati H, Miransari M (2010) Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust J Crop Sci 4:330–334

    CAS  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Dickschat JS, Kunze B, Wagner-Dobler I, Diestel R, Sasse F (2010) Biological activity of volatiles from marine and terrestrial bacteria. Mar Drugs 8:2976–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwab AP, Banks MK (1994) Biologically mediated dissipation of polyaromatic hydrocarbons in the root-zone. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, D.C, pp 132–141

    Chapter  Google Scholar 

  • Shann JR, Boyle JJ (1994) Influence of plant species on in situ rhizosphere degradation. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, D.C, pp 70–81

    Chapter  Google Scholar 

  • Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Simoneit BRT (1999) A review of biomarker compounds as source indicators and tracers for air pollution. Environ Sci Poll Res 6:159–169

    Article  CAS  Google Scholar 

  • Staley TE, Brauer DK (2006) Survival of a genetically modified root-colonizing Pseudomonad and Rhizobium strain in an acidic soil. Soil Sci Soc Am J 70:1906–1913

    Article  CAS  Google Scholar 

  • Steeghs M, Bais HP, De Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens JHG, Rask HM (2000) Inoculant production and formulation. Field Crop Res 65:249–258

    Article  Google Scholar 

  • Tunnacliffe A, García de Castro A, Manzanera M (2001) Anhydrobiotic engineering of bacterial and mammalian cells: Is intracellular trehalose sufficient? Cryobiology 43:124–132

    Article  CAS  PubMed  Google Scholar 

  • Uren N (2000) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. New York, USA, Marcel Dekker Inc, pp 19–40

    Google Scholar 

  • van Dillewijn P, Vilchez S, Paz JA, Ramos JL (2004) Plant-dependent active biological containment system for recombinant rhizobacteria. Environ Microbiol 6:88–92

    Article  PubMed  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vanelsas JD, Dijkstra AF, Govaert JM, Vanveen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into 2 soils of different texture in field microplots. FEMS Microbiol Ecol 38:151–160

    Article  Google Scholar 

  • Vanelsas JD, Heijnen CE (1990) Methods for the introduction of bacteria into soil—a review. Biol Fertil Soils 10:127–133

    Article  Google Scholar 

  • Vanelsas JD, Trevors JT, Jain D, Wolters AC, Heijnen CE, Vanoverbeek LS (1992) Survival of, and root colonization by, alginate-encapsulated Pseudomonas fluorescens cells following introduction into soil. Biol Fertil Soils 14:14–22

    Article  CAS  Google Scholar 

  • Vassilev N, Vassileva M, Nikolaeva I (2006) Simultaneous P-solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–144

    Article  CAS  PubMed  Google Scholar 

  • Vilchez S, Manzanera M, Ramos JL (2000) Control of expression of divergent Pseudomonas putida put promoters for proline catabolism. Appl Environ Microbiol 66:5221–5225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilchez S, Tunnacliffe A, Manzanera M (2008) Tolerance of plastic-encapsulated Pseudomonas putida KT2440 to chemical stress. Extremophiles 12:297–299

    Article  CAS  PubMed  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O'Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. Weinheim, Germany, VCH Verlagsgesellschaft mbH, pp 1–18

    Google Scholar 

  • Yuwono T, Handayani D, Soedarsono J (2005) The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Aust J Agric Res 56:715–721

    Article  Google Scholar 

  • Zohar-Perez C, Chet I, Nussinovitch A (2005) Mutual relationships between soils and biological carrier systems. Biotechnol Bioeng 92:54–60

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Junta de Andalucia (Spain) for funding this study through project reference P07-RNM-02588. Maximino Manzanera and Susana Vilchez were granted funding by Programa Ramón y Cajal (Ministerio de Educación y Ciencia, Spain and European Regional Development Fund, European Union).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximino Manzanera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilchez, S., Manzanera, M. Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought. Appl Microbiol Biotechnol 91, 1297–1304 (2011). https://doi.org/10.1007/s00253-011-3461-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3461-6

Keywords

Navigation