Skip to main content
Log in

The viability to a wall shear stress and propagation of Bifidobacterium longum in the intensive membrane bioreactor

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bifidobacterium longum grew at 65 L pilot scale of the membrane bioreactor (MBR), externally fitted with ceramic membrane (0.7 m2). Cell mass at the MBR reached 22.18 g L−1 as dry cell weight in 12 h, which is 8.44 times higher than cell mass attained at the vial culture. The growth rate in the vial culture was μ = 0.385 h and at the batch culture was μ = 1.13 h in the exponential period and μ = 0.31 h−1 in the stationary period. In the fed-batch mode was μ = 1.102 h−1 for 6 h with inoculation and declined to μ = 0.456 h−1 with feeding of feed medium. The growth rate at the MBR was μ = 0.134 h−1. The number of viable cells was 6.01 × 1012 cfu L−1 at the batch culture, but increased to 1.15 × 1014 cfu L−1 at the MBR culture. The specific growth rate of viable cell number (colony-forming units per liter, per hour) improved by 6.01 times from the batch to the MBR culture. The wall shear stress mainly generated by the pump, and the membrane incorporated into the MBR was controlled during the cultivation at the MBR. The viability of B. longum declined to under 10% in the first 2 weeks of the 4-week stability test (40°C) as B. longum was exposed to over wall shear stress 713 Pa, but the viability improved to 30–40% in wall shear stress of 260 Pa or STR culture. The loss in the cell viability can be saved by managing with wall shear stress during the cultivation at the MBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alp G, Aslim B (2010) Relationship between the resistance to bile salts and low pH with exopolysaccharides (EPS) production of Bifidobacterium spp. isolated from infant feces and breast milk. Anaerobe 16:101–105

    Article  CAS  Google Scholar 

  • Andaloussi SA, Talbaoui H, Marczak R, Bonaly R (1995) Isolation and characterization of exocellular polysaccharides produced by Bifidobacterium longum. Appl Microbiol Biotechnol 43:995–1000

    Article  CAS  Google Scholar 

  • Arunachalam KD (1999) Role of Bifidobacteria in nutrition, medicine and technology. Nutrition Res 19(10):1559–1597

    Article  CAS  Google Scholar 

  • Beier SP, Jonsson G (2009) A vibrating membrane bioreactor (VMBR): Macromolecular transmission—influence of extracellular polymeric substances. Chem Eng Sci 64:1436–1444

    Article  CAS  Google Scholar 

  • Bibal B, Vayssier Y, Goma G, Pareilleux A (1991) High-concentration cultivation of Lactococcus cremoris in a cell-recycle reactor. Biotechnol Bioeng 37:746–754

    Article  CAS  Google Scholar 

  • Boudrant J, Menshutina NV, Skorohodov AV, Guseva EV, Fick M (2005) Mathematical modeling of cell suspension in high cell density conditions application to L-lactic acid fermentation using Lactobacillus casei in membrane bioreactor. Process Biochem 40:1641–1647

    Article  CAS  Google Scholar 

  • Chae SR, Ahn YT, Kang ST, Shin HS (2006) Mitigated membrane fouling in a vertical submerged membrane bioreactor (VSMBR). J Membrane Sci 280:572–581

    Article  CAS  Google Scholar 

  • Cho J, Song K-G, Ahn K-H (2009) Contribution of microfiltration on phosphorous removal in the sequencing anoxic/anaerobic membrane bioreactor. Bioprocess Biosyst Eng 32:593–602

    Article  CAS  Google Scholar 

  • Chua LP, Tung SC, Chan WK (1999) Preliminary measurements of wall shear stress. Int Com Heat Mass Transfer 26(1):65–74

    Article  Google Scholar 

  • Crespo JPSG, Xavier AMRB, Barreto MTO, Gonçalves LMD, Almeida JS, Carrondo MJT (1992) Tangential flow filtration for continuous cell recycle culture of acidogenic bacteria. Chem Eng Sci 47(1):205–214

    Article  CAS  Google Scholar 

  • Daubert I, Mercier-Bonin M, Maranges C, Goma G, Fonade C, Lafforgue C (2003) Why and how membrane bioreactor with unsteady filtration conditions can improve the efficiency of biological processes. Ann N Y Acad Sci 984:420–435

    Article  CAS  Google Scholar 

  • Desjardins M-L, Roy D, Toupin C (1990) Uncoupling of growth and acids production in Bifidobacterium ssp. J Dairy Sci 73:1478–1484

    Article  CAS  Google Scholar 

  • Detry JG, Jensen BBB, Sindic M, Deroanne C (2009) Flow rate dependency of critical wall shear stress in a radial-flow cell. J Food Eng 92:86–99

    Article  Google Scholar 

  • Drews A, Kraume M (2005) Process improvement by application of membrane bioreactor. Chem Eng Res and Design 83(A3):276–284

    Article  CAS  Google Scholar 

  • Dunne C, Murphy L, Flynn S, O’Mahony L, O’Halloran S, Feeney M, Morrissey D, Thornton G, Fitzgerald G, Daly C, Kiely B, Quigley EMM, O’Sullivan GC, Shanahan F, Collins JK (1999) Probiotics: From myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie van Leeuwenhook 76:279–292

    Article  CAS  Google Scholar 

  • Etoh S, Sonomoto K, Ishizaki A (1999) Complementary effects of bifidogenic growth stimulators and ammonium sulfate in natural rubber serum powder on Bifidobacterium bifidum. Biosci Biotechnol Biochem 63(4):627–631

    Article  CAS  Google Scholar 

  • Gassanova LG, Netrusov AI, Teplyakov VV, Modigell M (2006) Fuel gases from organic wastes using membrane bioreactors. Desalination 198:56–66

    Article  CAS  Google Scholar 

  • Giorno L, Drioli E (2000) Biocatalytic membrane reactors: Applications and perspectives. TIBTECH 18:339–349

    CAS  Google Scholar 

  • Hollownia AT (2008) Wastewater treatment in a microbial membrane bioreactor—a model of the process. Desalination 221:552–558

    Article  Google Scholar 

  • Jaouen P, Vandanjon L, Quéméneur F (1999) The shear stress of microalgal cell suspensions (Tetraselmis suecica) in tangential flow filtration systems: The role of pumps. Bioresour Technol 68:149–154

    Article  CAS  Google Scholar 

  • Jiang L, Wang J, Liang S, Wang X, Cen P, Xu Z (2009) Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour Technol 100:3404–3409

    Google Scholar 

  • Jung I, Lovitt RW (2010) A comparative study of the growth of lactic acid bacteria in a pilot scale membrane bioreactor. J Chem Technol Biotechnol 85:1250–1259

    Article  CAS  Google Scholar 

  • Kamoshita Y, Ohashi R, Suzuki T (1998) Improvement of filtration performance of stirred ceramic membrane reactor and its application to rapid fermentation of lactic acid by dense cell culture of Lactococcus lactis. J Ferment Bioeng 85(4):422–427

    Article  CAS  Google Scholar 

  • Kalantzopoulos G (1997) Fermented products with probiotics qualities. Anaerobe 3:185–190

    Article  CAS  Google Scholar 

  • Kim W-J, Cha S-K (1995) Culture conditions and growth characteristics of Bifidobacterium longum. J Microbiol Biotechnol 5(3):149–153

    Google Scholar 

  • Kim JS, Lee CH, Chang IS (2001) Effect of pump shear on the performance of a crossflow membrane bioreactor. Wat Res 35(9):2137–2144

    Article  CAS  Google Scholar 

  • Kwon SG, Son JW, Kim HJ, Park CS, Lee JK, Ji GE, Oh DK (2006) High concentration cultivation of Bifidobacterium bifidum in a submerged membrane bioreactor. Biotechnol Prog 22:1591–1597

    CAS  Google Scholar 

  • Lacroix C, Yildirim S (2007) Fermentation technologies for the production of probiotics with high viability and functionality. Curr Opi in Biotechnol 18:176–183

    Article  CAS  Google Scholar 

  • Lange H, Taillandier P, Riba J-P (2001) Effect of high shear stress on microbial viability. J Chem Technol Biotechnol 76:501–505

    Article  CAS  Google Scholar 

  • Lankaputhra WEV, Shah NP (1995) Survival of Lactobacillus acidophilus and Bifidobacterium spp. in the presence of acid and bile salts. Cult Dairy Prod J 30:2–7

    CAS  Google Scholar 

  • Le-Clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Membrane Sci 284:17–53

    Article  CAS  Google Scholar 

  • Levenspiel O (1980) The Monod equation: A revisit and a generalization to product inhibition situations. Biotechnol Bioeng 22:1671–1687

    Article  CAS  Google Scholar 

  • Menniti A, Kang S, Elimelech M, Morgenroth E (2009) Influence of shear on the production of extracellular polymeric substances in membrane bioreactors. Wat Res 43:4305–4315

    Article  CAS  Google Scholar 

  • Moueddeb H, Sanchez J, Bardot C, Fick M (1996) Membrane bioreactor for lactic acid production. J Membrane Sci 114(1):59–71

    Article  CAS  Google Scholar 

  • Ohashi R, Yamamoto T, Suzuki T (1999) Continuous production of lactic acid from molasses by perfusion culture of Lactococcus lactis using a stirred ceramic membrane reactor. J Biosci Bioeng 87(5):647–654

    Article  CAS  Google Scholar 

  • Pal P, Sikder J, Roy S, Giorno L (2009) Process intensification in lactic acid production: A review of membrane based processes. Chem Eng Processing 48:1549–1559

    Article  CAS  Google Scholar 

  • Reimann S, Grattepanche F, Benz R, Mozzetti V, Rezzonico E, Berger B, Lacroix C (2010) Improved tolerance to bile salts of aggregated Bifidobacterium longum produced during continuous culture with immobilized cells. Bioresour Technol 102(6):4559–4567

    Article  Google Scholar 

  • Sato M, Matsuo T, Orita N, Yagi Y (1991) Synthesis of novel sugars, oligoglucosyl-inositol, and their growth stimulating effect for Bifidobacterium. Biotechnol Letters 13(2):69–74

    Article  CAS  Google Scholar 

  • Schiraldi C, Adduci V, Valli V, Maresca C, Giuliano M, Lamberti M, Carteni M, De Rosa M (2003) High cell density cultivation of probiotics and lactic acid production. Biotechnol Bioeng 82(2):211–222

    Article  Google Scholar 

  • Shihata A, Shah AP (2002) Influence of addition of proteolytic strains of Lactobacillus delbrueckii subsp. bulgaricus to commercial ABT starter cultures on texture of yoghurt, exopolysaccharide production and survival of bacteria. Int Dairy J 12:765–772

    Article  CAS  Google Scholar 

  • Shimizu Y, Okuno Y-I, Uryu K, Ohtsubo S, Watanabe A (1996) Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment. Wat Res 30(10):2385–2392

    Article  CAS  Google Scholar 

  • Silvia EM, Yang S-T (1995) Kinetics and stability of a fibrous-bed bioreactor for continuous production of lactic acid from unsupplemented acid whey. J Biotechnol 41(1):59–70

    Article  Google Scholar 

  • Suzuki T (1996) A dense cell culture system for microorganisms using a stirred ceramic membrane reactor incorporating asymmetric porous ceramic filters. J Ferment Bioeng 82(3):264–271

    Article  CAS  Google Scholar 

  • Taniguchi M, Kotani N, Kobayashi T (1987) High concentration cultivation of Bifidobacterium longum in fermentation with cross-flow filtration. Appl Microbiol Biotechnol 25(5):438–441

    Article  CAS  Google Scholar 

  • Timmerman HM, Koning CJM, Mulder L, Rombouts FM, Beynen AC (2004) Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol 96(3):219–233

    Article  CAS  Google Scholar 

  • Vernazza C, Gibson GR, Rastall RA (2006) Carbohydrate preference, acid tolerance and bile tolerance in five strains of Bifidobacterium. J Appl Microbiol 100(4):846–853

    Article  CAS  Google Scholar 

  • Von Weymarn N, Kiviharju K, Leisola M (2002) High level production of D-mannitol with membrane cell-recycle bioreactor. J Ind Microbiol Biotechnol 29:44–49

    Article  Google Scholar 

  • Zhao Z, Li Y, Chen L (2010) Dynamics of product inhibition on lactic acid fermentation. Appl Math Comput 217(1):175–184

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was fulfilled in a corporation between Department of Biotechnology in Pukyong National University (PKNU) and Department of Marine Bioscience and Biotechnology in amBio Co Ltd. under the funding scheme of National Research Foundation of Korea (NRF, Korea). I am very appreciated NRF, Korea for allowance of publication and Pukyong National University for many contributions and assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Soo Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, I.S., Oh, M.K., Cho, Y.C. et al. The viability to a wall shear stress and propagation of Bifidobacterium longum in the intensive membrane bioreactor. Appl Microbiol Biotechnol 92, 939–949 (2011). https://doi.org/10.1007/s00253-011-3387-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3387-z

Keywords

Navigation