Skip to main content
Log in

Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The Corynebacterium glutamicum gene cg2091 is encoding a polyphosphate (PolyP)/ATP-dependent glucokinase (PPGK). Previous work demonstrated the association of PPGK to PolyP granules. The deduced amino acid sequence of PPGK shows 45% sequence identity to PolyP/ATP glucomannokinase of Arthrobacter sp. strain KM and 50% sequence identity to PolyP glucokinase of Mycobacterium tuberculosis H37Rv. PPGK from C. glutamicum was purified from recombinant Escherichia coli. PolyP was highly preferred over ATP and other NTPs as substrate and with respect to the tested PolyPs differing in chain length; the protein was most active with PolyP75. Gel filtration analysis revealed that PolyP supported the formation of homodimers of PPGK and that PPGK was active as a homodimer. A ppgK deletion mutant (ΔppgK) showed slowed growth in minimal medium with maltose as sole carbon source. Moreover, in minimal medium containing 2 to 4% (w/v) glucose as carbon source, ΔppgK grew to lower final biomass concentrations than the wild type. Under phosphate starvation conditions, growth of ΔppgK was reduced, and growth of a ppgK overexpressing strain was increased as compared to wild type and empty vector control, respectively. Thus, under conditions of glucose excess, the presence of PPGK entailed a growth advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arndt A, Eikmanns BJ (2008) Regulation of carbon metabolism in Corynebacterium glutamicum. In: Burkovski A (ed) Corynebacteria: genomics and molecular biology. Caister Academic, Wymondham, pp 155–182

    Google Scholar 

  • Ayraud S, Janvier B, Labigne A, Ecobichon C, Burucoa C, Fauchere JL (2005) Polyphosphate kinase: a new colonization factor of Helicobacter pylori. FEMS Microbiol Lett 243:45–50

    Article  CAS  Google Scholar 

  • Baldwin SA, Henderson PJ (1989) Homologies between sugar transporters from eukaryotes and prokaryotes. Annu Rev Physiol 51:459–471

    Article  CAS  Google Scholar 

  • Brown MR, Kornberg A (2004) Inorganic polyphosphate in the origin and survival of species. Proc Natl Acad Sci USA 101:16085–16087

    Article  CAS  Google Scholar 

  • Brown MR, Kornberg A (2008) The long and short of it—polyphosphate, PPK and bacterial survival. Trends Biochem Sci 33:284–290

    Article  CAS  Google Scholar 

  • Curtis SJ, Epstein W (1975) Phosphorylation of d-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol 122:1189–1199

    CAS  Google Scholar 

  • Docampo R (2006) Acidocalcisomes and polyphosphate granules. In: Shively JM (ed) Inclusions in prokaryotes, vol 1. Springer, Berlin, pp 53–70

    Chapter  Google Scholar 

  • Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press LLC, Boca Raton

    Google Scholar 

  • Eikmanns BJ, Rittmann D, Sahm H (1995) Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol 177:774–782

    CAS  Google Scholar 

  • Gourdon P, Raherimandimby M, Dominguez H, Cocaign-Bousquet M, Lindley ND (2003) Osmotic stress, glucose transport capacity and consequences for glutamate overproduction in Corynebacterium glutamicum. J Biotechnol 104:77–85

    Article  CAS  Google Scholar 

  • Guixe V, Merino F (2009) The ADP-dependent sugar kinase family: kinetic and evolutionary aspects. IUBMB Life 61:753–761

    Article  CAS  Google Scholar 

  • Hanahan D (1985) Techniques for transformation of E. coli. In: Glover DM (ed) DNA cloning: a practical approach, vol 1. IRL Press, Oxford, pp 109–135

    Google Scholar 

  • Herzenberg LA (1959) Studies on the induction of beta-galactosidase in a cryptic strain of Escherichia coli. Biochim Biophys Acta 31:525–538

    Article  CAS  Google Scholar 

  • Hooley P, Whitehead MP, Brown MR (2008) Eukaryote polyphosphate kinases: is the ‘Kornberg’ complex ubiquitous? Trends Biochem Sci 33:577–582

    Article  CAS  Google Scholar 

  • Hsieh PC, Kowalczyk TH, Phillips NF (1996a) Kinetic mechanisms of polyphosphate glucokinase from Mycobacterium tuberculosis. Biochemistry 35:9772–9781

    Article  CAS  Google Scholar 

  • Hsieh PC, Shenoy BC, Samols D, Phillips NF (1996b) Cloning, expression, and characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J Biol Chem 271:4909–4915

    Article  CAS  Google Scholar 

  • Jahid IK, Silva AJ, Benitez JA (2006) Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol 72:7043–7049

    Article  CAS  Google Scholar 

  • Jahreis K, Pimentel-Schmitt EF, Bruckner R, Titgemeyer F (2008) Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 32:891–907

    Article  CAS  Google Scholar 

  • Kim KS, Rao NN, Fraley CD, Kornberg A (2002) Inorganic polyphosphate is essential for long-term survival and virulence factors in Shigella and Salmonella spp. Proc Natl Acad Sci USA 99:7675–7680

    Article  CAS  Google Scholar 

  • Klauth P, Pallerla SR, Vidaurre D, Ralfs C, Wendisch VF, Schoberth SM (2006) Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum. Appl Microbiol Biotechnol 72:1099–1106

    Article  CAS  Google Scholar 

  • Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    Article  CAS  Google Scholar 

  • Kulaev IS, Vagabov VM, Kulakovskaya TV (2004) The biochemistry of inorganic polyphosphates, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Kundig W, Ghosh S, Roseman S (1964) Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proc Natl Acad Sci USA 52:1067–1074

    Article  CAS  Google Scholar 

  • Kwakman JH, Postma PW (1994) Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. J Bacteriol 176:2694–2698

    CAS  Google Scholar 

  • Lambert C, Weuster-Botz D, Weichenhain R, Kreutz EW, De Graaf AA, Schoberth SM (2002) Monitoring of inorganic polyphosphate dynamics in Corynebacterium glutamicum. using a novel oxygen sparger for real time 31P in vivo NMR. Acta Biotechnol 22:245

    Article  CAS  Google Scholar 

  • Lindner SN, Vidaurre D, Willbold S, Schoberth SM, Wendisch VF (2007) NCgl2620 encodes a class II polyphosphate kinase in Corynebacterium glutamicum. Appl Environ Microbiol 73:5026–5033

    Article  CAS  Google Scholar 

  • Lindner SN, Knebel S, Wesseling H, Schoberth SM, Wendisch VF (2009) Exopolyphosphatases PPX1 and PPX2 from Corynebacterium glutamicum. Appl Environ Microbiol 75:3161–3170

    Article  CAS  Google Scholar 

  • Lindner SN, Niederholtmeyer H, Schmitz K, Schoberth SM, Wendisch VF (2010) Polyphosphate/ATP-dependent NAD kinase of Corynebacterium glutamicum: biochemical properties and impact of ppnK overexpression on lysine production. Appl Microbiol Biotechnol

  • Moon MW, Kim HJ, Oh TK, Shin CS, Lee JS, Kim SJ, Lee JK (2005) Analyses of enzyme II gene mutants for sugar transport and heterologous expression of fructokinase gene in Corynebacterium glutamicum ATCC 13032. FEMS Microbiol Lett 244:259–266

    Article  CAS  Google Scholar 

  • Moon MW, Park SY, Choi SK, Lee JK (2007) The phosphotransferase system of Corynebacterium glutamicum: features of sugar transport and carbon regulation. J Mol Microbiol Biotechnol 12:43–50

    Article  CAS  Google Scholar 

  • Mukai T, Kawai S, Matsukawa H, Matuo Y, Murata K (2003) Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM. Appl Environ Microbiol 69:3849–3857

    Article  CAS  Google Scholar 

  • Pallerla SR, Knebel S, Polen T, Klauth P, Hollender J, Wendisch VF, Schoberth SM (2005) Formation of volutin granules in Corynebacterium glutamicum. FEMS Microbiol Lett 243:133–140

    Article  CAS  Google Scholar 

  • Parche S, Burkovski A, Sprenger GA, Weil B, Kramer R, Titgemeyer F (2001) Corynebacterium glutamicum: a dissection of the PTS. J Mol Microbiol Biotechnol 3:423–428

    CAS  Google Scholar 

  • Park SY, Kim HK, Yoo SK, Oh TK, Lee JK (2000) Characterization of glk, a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol Lett 188:209–215

    Article  CAS  Google Scholar 

  • Pimentel-Schmitt EF, Thomae AW, Amon J, Klieber MA, Roth HM, Muller YA, Jahreis K, Burkovski A, Titgemeyer F (2007) A glucose kinase from Mycobacterium smegmatis. J Mol Microbiol Biotechnol 12:75–81

    Article  CAS  Google Scholar 

  • Postma PW, Lengeler JW (1985) Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269

    CAS  Google Scholar 

  • Rao NN, Gomez-Garcia MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647

    Article  CAS  Google Scholar 

  • Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH, Kornberg A (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 97:9636–9641

    Article  CAS  Google Scholar 

  • Rittmann D, Schaffer S, Wendisch VF, Sahm H (2003) Fructose-1, 6-bisphosphatase from Corynebacterium glutamicum: expression and deletion of the fbp gene and biochemical characterization of the enzyme. Arch Microbiol 180:285–292

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Sakuraba H, Mitani Y, Goda S, Kawarabayasi Y, Ohshima T (2003) Cloning, expression, and characterization of the first archaeal ATP-dependent glucokinase from aerobic hyperthermophilic archaeon Aeropyrum pernix. J Biochem 133:219–224

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schäfer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Puhler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  Google Scholar 

  • Schröder HC, Müller WEG (1999) In: Inorganic polyphosphates: biochemistry, biology, biotechnology. Progress in molecular and subcellular biology, vol 23. Springer, Berlin, Germany

  • Seibold GM, Wurst M, Eikmanns BJ (2009) Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. Microbiology 155:347–358

    Article  CAS  Google Scholar 

  • Shimizu H, Hirasawa T (2007) Production of glutamate and glutamate-related amino acids: molecular mechanism analysis and metabolic engineering. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg

    Google Scholar 

  • Stansen C, Uy D, Delaunay S, Eggeling L, Goergen JL, Wendisch VF (2005) Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol 71:5920–5928

    Article  CAS  Google Scholar 

  • Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

    Article  CAS  Google Scholar 

  • Szymona M, Ostrowski W (1964) Inorganic polyphosphate glucokinase of Mycobacterium phlei. Biochim Biophys Acta 85:283–295

    CAS  Google Scholar 

  • Szymona M, Widomski J (1974) A kinetic study on inorganic polyphosphate glucokinase from Mycobacterium tuberculosis H37RA. Physiol Chem Phys 6:393–404

    CAS  Google Scholar 

  • Tanaka S, Lee SO, Hamaoka K, Kato J, Takiguchi N, Nakamura K, Ohtake H, Kuroda A (2003) Strictly polyphosphate-dependent glucokinase in a polyphosphate-accumulating bacterium, Microlunatus phosphovorus. J Bacteriol 185:5654–5656

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Weisser P, Kramer R, Sahm H, Sprenger GA (1995) Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol 177:3351–3354

    CAS  Google Scholar 

  • Wendisch VF, Bott M (2005) Phosphorus metabolism of Corynebacterium glutamicum. In: Eggeling L, Bott M (eds) Handbook of Corynebacterium glutamicum. CRC Press LLC, Boca Raton, pp 379–398

    Google Scholar 

  • Wittmann C, Becker J (2007) The l-lysine story: from metabolic pathways to industrial production. In: Wendisch VF (ed) Amino acid biosynthesis—pathways, regulation and metabolic engineering. Springer, Heidelberg

    Google Scholar 

  • Zeppenfeld T, Larisch C, Lengeler JW, Jahreis K (2000) Glucose transporter mutants of Escherichia coli K-12 with changes in substrate recognition of IICB(Glc) and induction behavior of the ptsG gene. J Bacteriol 182:4443–4452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker F. Wendisch.

Additional information

Steffen N. Lindner, Sandra Knebel and Srinivas R. Pallerla are equal contributors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindner, S.N., Knebel, S., Pallerla, S.R. et al. Cg2091 encodes a polyphosphate/ATP-dependent glucokinase of Corynebacterium glutamicum . Appl Microbiol Biotechnol 87, 703–713 (2010). https://doi.org/10.1007/s00253-010-2568-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2568-5

Keyword

Navigation