Skip to main content
Log in

Development of natto with germination-defective mutants of Bacillus subtilis (natto)

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of cortex-lysis related genes with the pdaA, sleB, and cwlD mutations of Bacillus subtilis (natto) NAFM5 on sporulation and germination were investigated. Single or double mutations did not prevent normal sporulation, but did affect germination. Germination was severely inhibited by the double mutation of sleB and cwlD. The quality of natto made with the sleB cwlD double mutant was tested, and the amounts of glutamic acid and ammonia were very similar to those in the wild type. The possibility of industrial development of natto containing a reduced number of viable spores is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anagnostopoulos C, Spizizen J (1961) Requirements for transformation in Bacillus subtilis. J Bacteriol 81:741–746

    Article  CAS  Google Scholar 

  • Casula G, Cutting SM (2002) Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol 68:2344–2352

    Article  CAS  Google Scholar 

  • Duc le H, Hong HA, Cutting SM (2003) Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21:4215–4224

    Article  CAS  Google Scholar 

  • Ferguson CC, Camp AH, Losick R (2007) gerT, a newly discovered germination gene under the control of the sporulation transcription factor σK in Bacillus subtilis. J Bacteriol 189:7681–7689

    Article  CAS  Google Scholar 

  • Fukushima T, Yamamoto H, Atrih A, Foster SJ, Sekiguchi J (2002) A polysaccharide deacetylase gene (pdaA) is required for germination and for production of muramic delta-lactam residues in the spore cortex of Bacillus subtilis. J Bacteriol 184:6007–6015

    Article  CAS  Google Scholar 

  • Fukushima T, Kitajima T, Sekiguchi J (2005) A polysaccharide deacetylase homologue, PdaA, in Bacillus subtilis acts as N-acetylmuramic acid deacetylase in vitro. J Bacteriol 187:1287–1292

    Article  CAS  Google Scholar 

  • Gilmore ME, Bandyopadhyay D, Dean AM, Linnstaedt SD, Popham DL (2004) Production of muramic delta-lactam in Bacillus subtilis spore peptidoglycan. J Bacteriol 186:80–89

    Article  CAS  Google Scholar 

  • Homma K, Wakana N, Suzuki Y, Nukui M, Daimatsu T, Tanaka E, Tanaka K, Koga Y, Nakajima Y, Nakazawa H (2006) Treatment of natto, a fermented soybean preparation, to prevent excessive plasma vitamin K concentrations in patients taking warfarin. J Nutr Sci Vitaminol (Tokyo) 52:297–301

    Article  CAS  Google Scholar 

  • Ishikawa S, Yamane K, Sekiguchi J (1998) Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. J Bacteriol 180:1375–1380

    Article  CAS  Google Scholar 

  • Kaneki M, Hodges SJ, Hosoi T, Fujiwara S, Lyons A, Crean SJ, Ishida N, Nakagawa M, Takechi M, Sano Y, Mizuno Y, Hoshino S, Miyao M, Inoue S, Horiki K, Shiraki M, Ouchi Y, Orimo H (2001) Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 17:315–321

    Article  CAS  Google Scholar 

  • Kimura K, Tran LS, Uchida I, Itoh Y (2004) Characterization of Bacillus subtilis gamma-glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate. Microbiology 150:4115–4123

    Article  CAS  Google Scholar 

  • Masayama A, Fukuoka H, Kato S, Yoshimura T, Moriyama M, Moriyama R (2006) Subcellular localization of a germination-specific cortex-lytic enzyme, SleB, of bacilli during sporulation. Genes Genetic Syst 81:163–169

    Article  CAS  Google Scholar 

  • Moir A (1981) Germination properties of a spore coat-defective mutant of Bacillus subtilis. J Bacteriol 146:1106–1116

    Article  CAS  Google Scholar 

  • Moir A (1992) Spore germination. In: Doi RH, McGloughlin M (eds) Biology of bacilli: applications to industry. Butterworth-Heinemann, Boston, pp 23–38

    Google Scholar 

  • Moriyama R, Hattori A, Miyata S, Kudoh S, Makino S (1996) A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to l-alanine-mediated germination. J Bacteriol 178:6059–6063

    Article  CAS  Google Scholar 

  • Murooka Y, Yamashita M (2008) Traditional healthful fermented products of Japan. J Ind Microbiol Biotechnol 35:791–798

    Article  CAS  Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. Wiley, Chichester, pp 391–450

    Google Scholar 

  • Paidhungat M, Setlow P (2002) Spore germination and outgrowth. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM, Washington DC, pp 537–548

    Google Scholar 

  • Piggot PJ, Losick R (2002) Sporulation genes and intercompartmental regulation. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. ASM, Washington DC, pp 483–517

    Google Scholar 

  • Popham DL, Helin J, Costello CE, Setlow P (1996) Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. Proc Natl Acad Sci USA 93:15405–15410

    Article  CAS  Google Scholar 

  • Qiu D, Fujita K, Sakuma Y, Tanaka T, Ohashi Y, Oshima H, Tomita M, Itaya M (2004) Comparative analysis of physical maps of four Bacillus subtilis (natto) genomes. Appl Environ Microbiol 70:6247–6256

    Article  CAS  Google Scholar 

  • Ragkousi K, Eichenberger P, van Ooij C, Setlow P (2003) Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. J Bacteriol 185:2315–2329

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schaeffer P, Millet J, Aubert JP (1965) Catabolic repression of bacterial sporulation. Proc Natl Acad Sci USA 54:704–711

    Article  CAS  Google Scholar 

  • Sekiguchi J, Akeo K, Yamamoto H, Khasanov FK, Alonso JC, Kuroda A (1995) Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. J Bacteriol 177:5582–5589

    Article  CAS  Google Scholar 

  • Warth AD, Strominger JL (1969) Structure of the peptidoglycan of bacterial spores: occurrence of the lactam of muramic acid. Proc Natl Acad Sci USA 64:528–535

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Keitarou Kimura (National Food Research Institute) for the supply of B. subtilis (natto) NAFM5. This work was supported by Grants-in-Aid for Scientific Research (B) (19380047) and for the Global COE program of the Ministry of Education, Culture, Sports, Science, and Technology of Japan (MECSSTJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichi Sekiguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsui, N., Murasawa, H. & Sekiguchi, J. Development of natto with germination-defective mutants of Bacillus subtilis (natto). Appl Microbiol Biotechnol 82, 741–748 (2009). https://doi.org/10.1007/s00253-009-1894-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1894-y

Keywords

Navigation