Skip to main content
Log in

Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Functional expression of recombinant Pseudozyma antarctica lipase B (PalB) in Escherichia coli was explored. While PalB was stably expressed in the cytoplasm, most of the expressed gene product aggregated in cells as inactive inclusion bodies. In contrast, PalB was extremely unstable when expressed in the periplasm, also leading to poor expression performance. Such unstable PalB can be rescued by coexpression of several periplasmic folding factors, such as DegP, FkpA, DsbA, and DsbC but not cytoplasmic ones. As a result, the performance for functional PalB expression in the periplasm was significantly improved. To our knowledge, this is the first report demonstrating the use of folding factors to rescue the extremely unstable gene product that is otherwise completely degradable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123

    Article  CAS  PubMed  Google Scholar 

  • Arie JP, Sassoon N, Betton JM (2001) Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol Microbiol 39:199–210

    Article  CAS  PubMed  Google Scholar 

  • Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  PubMed  Google Scholar 

  • Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96:13703–13708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betton JM, Boscus D, Missiakas D, Raina S, Hofnung M (1996) Probing the structural role of an alpha beta loop of maltose- binding protein by mutagenesis: heat-shock induction by loop variants of the maltose-binding protein that form periplasmic inclusion bodies. J Mol Biol 262:140–150

    Article  CAS  PubMed  Google Scholar 

  • Betton J-M, Sassoon N, Hofnung M, Laurent M (1998) Degradation versus aggregation of misfolded maltose-binding protein in the periplasm of Escherichia coli. J Biol Chem 273:8897–8902

    Article  CAS  PubMed  Google Scholar 

  • Blank K, Morfill J, Gumpp H, Gaub HE (2006) Functional expression of Candida antarctica lipase B in Escherichia coli. J Biotechnol 125:474–483

    Article  CAS  PubMed  Google Scholar 

  • Bothmann H, Pluckthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA-I. Increased functional expression of antibody fragments with and without cis-prolines. J Biol Chem 275:17100–17105

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  PubMed  Google Scholar 

  • Duguay AR, Silhavy TJ (2004) Quality control in the bacterial periplasm. Biochim Biophys Acta 1694:121–134

    Article  CAS  PubMed  Google Scholar 

  • Dummler A, Lawrence A-M, de Marco A (2005) Simplified screening for the detection of soluble fusion constructs expressed in E. coli using a modular set of vectors. Microbial Cell Factories 4:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georgiou G, Segatori L (2005) Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr Opin Biotechnol 16:538–545

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823

    Article  CAS  PubMed  Google Scholar 

  • Guigueno A, Belin P, Boquet P (1997) Defective export in Escherichia coli caused by DsbA'–PhoA hybrid proteins whose DsbA' domain cannot fold into a conformation resistant to periplasmic proteases. J Bacteriol 179:3260–3269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennecke G, Nolte J, Volkmer-Engert R, Schneider-Mergener J, Behrens S (2005) The periplasmic chaperone SurA exploits two features characteristic of integral outer membrane proteins for selective substrate recognition. J Biol Chem 280:23540–23548

    Article  CAS  PubMed  Google Scholar 

  • Hoegh I, Patkar S, Halkier T, Hansen MT (1995) Two lipases from Candida antarctica: cloning and expression in Aspergillus oryzae. Can J Bot 73:869–875

    Article  Google Scholar 

  • Hong Y-R, Mullaney JM, Black LW (1995) Protection from proteolysis using a T4::T7-RNAP phage expression-packaging-processing system. Gene 162:5–11

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397

    Article  CAS  PubMed  Google Scholar 

  • Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  CAS  PubMed  Google Scholar 

  • Joly JC, Swartz JR (1994) Protein folding activities of Escherichia coli protein disulfide isomerase. Biochemistry 33:4231–4236

    Article  CAS  PubMed  Google Scholar 

  • Joly JC, Leung WS, Swartz JR (1998) Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci 95:2773–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadokura H, Kawasaki H, Yoda K, Yamasaki M, Kitamoto K (2001) Efficient export of alkaline phosphatase overexpressed from a multicopy plasmid requires degP, a gene encoding a periplasmic protease of Escherichia coli. Journal of General and Applied Microbiology 47:133–141

    Article  CAS  Google Scholar 

  • Kadokura H, Katzen F, Beckwith J (2003) Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72:111–135

    Article  CAS  PubMed  Google Scholar 

  • Kok RG, Christoffels VM, Vosman B, Hellingwerf KJ (1993) Growth-phase-dependent expression of the lipolytic system of Acinetobacter calcoaceticus BD413: cloning of a gene encoding one of the esterases. J Gen Microbiol 139:2329–2342

    Article  CAS  PubMed  Google Scholar 

  • Kolmar H, Waller PR, Sauer RT (1996) The DegP and DegQ periplasmic endoproteases of Escherichia coli: specificity for cleavage sites and substrate conformation. J Bacteriol 178:5925–5929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa Y, Yanagi H, Yura T (2000) Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl Environ Microbiol 66:3960–3965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurokawa Y, Yanagi H, Yura T (2001) Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J Biol Chem 276:14393–14399

    Article  CAS  PubMed  Google Scholar 

  • Lazar SW, Kolter R (1996) SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol 178:1770–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linko YY, Lamsa M, Wu XY, Uosukainen E, Seppala J, Linko P (1998) Biodegradable products by lipase biocatalysis. J Biotechnol 66:41–50

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Schmid RD, Rusnak M (2006) Functional expression of Candida antarctica lipase B in the Escherichia coli cytoplasm—a screening system for a frequently used biocatalyst. Appl Microbiol Biotechnol 72:1024–1032

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JS, Bhambra A, Murrell JC, Dalton H (1997) Inactivation of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath) by proteolysis can be overcome by a Gly to Gin modification. Eur J Biochem 248:72–79

    Article  CAS  PubMed  Google Scholar 

  • Lukacin R, Groning I, Schiltz E, Britsch L, Matern U (2000) Purification of recombinant flavanone 3b-hydroxylase from Petunia hybrida and assignment of the primary site of proteolytic degradation. Arch Biochem Biophys 375:364–370

    Article  CAS  PubMed  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messens J, Collet J-F, Belle KV, Brosens E, Loris R, Wyns L (2007) The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem 282:31302–31307

    Article  CAS  PubMed  Google Scholar 

  • Mironova R, Niwa T, Hayashi H, Dimitrova R, Ivanov I (2001) Evidence for non-enzymatic glycosylation in Escherichia coli. Mol Microbiol 39:1061–1068

    Article  CAS  PubMed  Google Scholar 

  • Misra R, Castillokeller M, Deng M (2000) Overexpression of protease-deficient DegP(S210A) rescues the lethal phenotype of Escherichia coli OmpF assembly mutants in a degP background. J Bacteriol 182:4882–4888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missiakas D, Raina S (1997) Protein folding in the bacterial periplasm. J Bacteriol 179:2465–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missiakas D, Georgopoulos C, Raina S (1994) The Escherichia coli dsbC (xprA) gene decodes a periplasmic protein involved in disulfide bond formation. The EMBO Journal 13:2013–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missiakas D, Schwager F, Raina S (1995) Identification and characterization of a new disulfide isomerase-like protein (DsbD) in Escherichia coli. The EMBO Journal 14:3415–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missiakas D, Betton J-M, Raina S (1996) New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol Microbiol 21:871–884

    Article  CAS  PubMed  Google Scholar 

  • Mogensen JE, Otzen DE (2005) Interactions between folding factors and bacterial outer membrane proteins. Mol Microbiol 57:326–346

    Article  CAS  PubMed  Google Scholar 

  • Nishihara K, Kanemori M, Yanagi H, Yura T (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan K-L, Hsiao H-C, Weng C-L, Wu M-S, Chou CP (2003) Roles of DegP in prevention of protein misfolding in the periplasm upon overexpression of penicillin acylase in Escherichia coli. J Bacteriol 185:3020–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Perez J, Gutierrez J (1995) An arabinose-inducible expression vector, pAR3, compatible with ColE1-derived plasmids. Gene 158:141–142

    Article  CAS  PubMed  Google Scholar 

  • Phillips TA, Vanbogelen RA, Neidhardt FC (1984) Lon gene product of Escherichia coli is a heat-shock protein. J Bacteriol 159:283–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Swartz JR, Georgiou G (1998) Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl Environ Microbiol 64:4891–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raivio TL, Silhavy TJ (1999) The sE and Cpx regulatory pathways: overlapping but distinct envelope stress responses. Curr Opin Microbiol 2:159–165

    Article  CAS  PubMed  Google Scholar 

  • Ramm K, Pluckthun A (2000) The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA-II. Isomerase-independent chaperone activity in vitro. J Biol Chem 275:17106–17113

    Article  CAS  PubMed  Google Scholar 

  • Rotticci D, Rotticci-Mulder JC, Denman S, Norin T, Hult K (2001) Improved enantioselectivity of a lipase by rational protein engineering. Chem Bio Chem 2:766–770

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Saul FA, Arie JP, Normand BVL, Kahn R, Betton JM, Bentley GA (2004) Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. J Mol Biol 335:595–608

    Article  CAS  PubMed  Google Scholar 

  • Schlapschy M, Grimm S, Skerra A (2006) A system for concomitant overexpression of four periplasmic folding catalysts to improve secretory protein production in Escherichia coli. Protein Engineering Design & Selection 19:385–390

    Article  CAS  Google Scholar 

  • Sone M, Akiyana Y, Ito K (1997) Differential in vivo roles played by DsbA and DsbC in the formation of protein disulfide bonds. The Journal of Biological Chemistry 272:10349–10352

    Article  CAS  PubMed  Google Scholar 

  • Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347

    Article  CAS  PubMed  Google Scholar 

  • Strauch KL, Johnson K, Beckwith J (1989) Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol 171:2689–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uppenberg J, Patkar STB, Jones TA (1994) Crystallization and preliminary X-ray studies of lipase B from Candida antarctica. J Mol Biol 235:790–792

    Article  CAS  PubMed  Google Scholar 

  • Wall JG, Pluckthun A (1995) Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6:507–516

    Article  CAS  PubMed  Google Scholar 

  • Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893

    Article  CAS  PubMed  Google Scholar 

  • Woodcock DM, Crowther PJ, Doherty J, Jefferson S, Decruz E, Noyerweidner M, Smith SS, Michael MZ, Graham MW (1989) Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MS, Pan KL, Chou CP (2007) Effect of heat-shock proteins for relieving physiological stress and enhancing the production of penicillin acylase in Escherichia coli. Biotechnol Bioeng 96:956–966

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Suen W-C, Windsor W, Xiao L, Madison V, Zaks A (2003a) Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. Protein Eng 16:599–605

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Song LP, Fang M, Wang F, He D, Zhao R, Liu J, Zhou ZY, Yin CC, Lin Q et al (2003b) Production of soluble and functional engineered antibodies in Escherichia coli improved by FkpA. BioTechniques 35:1032–1042

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Research Chair (CRC) program. We thank EMBL, T. Yura, and A. Skerra for providing various expression vectors in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Perry Chou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Lewis, D. & Chou, C.P. Effect of folding factors in rescuing unstable heterologous lipase B to enhance its overexpression in the periplasm of Escherichia coli . Appl Microbiol Biotechnol 79, 1035–1044 (2008). https://doi.org/10.1007/s00253-008-1514-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1514-2

Keywords

Navigation