Skip to main content
Log in

Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this paper, the biomass and lutein productivity of the lutein-rich new strain Scenedesmus almeriensis is modelled versus irradiance and temperature. The results demonstrate that S. almeriensis is a mesophile microorganism with an optimal growth temperature of 35°C, and capable of withstanding up to 48°C, which caused culture death. This strain is also tolerant to high irradiances, showing no signs of photoinhibition even at the maximum irradiance essayed of 1625 μE m−2 s−1 accumulating up to 0.55% dry weight (d.wt.) of lutein. The optimal conditions that maximise the biomass productivity also favour the lutein productivity, lutein being a primary metabolite. Maximal biomass and lutein productivities of 0.87 g l−1 day−1 and 4.77 mg l−1 day−1, respectively, were measured. The analysis of light availability inside the cultures, quantified as average irradiance, demonstrates that the cultures were mainly photo-limited, although photosaturation also took place at high external irradiances. The effect of temperature was also investigated finding that the specific maximal growth rate is modified by the temperature according to the Arrhenius equation. The influence of both light availability and temperature was included in an overall growth model, which showed, as a result, capable of fitting the whole set of experimental data. An overall lutein accumulation rate model was also proposed and used in a regression analysis. Simulations performed using the proposed models show that under outdoor conditions a biomass productivity of 0.95 g l−1 day−1 can be expected, with a lutein productivity up to 5.31 mg l−1 day−1. These models may be useful to assist the design and operation optimisation of outdoor cultures of this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acién FG, García F, Sánchez JA, Fernández JM, Molina E (1998) Modelling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter and solar irradiance. Biotechnol. Bioeng 58:605–616

    Article  Google Scholar 

  • Del Campo JA, Moreno J, Rodríguez H, Vargas MA, Rivas J, Guerrero MG (2000) Carotenoid content of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J Biotechnol 76:51–59

    Article  CAS  Google Scholar 

  • Del Campo JA, Rodriguez H, Moreno J, Vargas MA, Rivas J, Guerrero MG (2001) Lutein production by Muriellopsis sp. in an outdoor tubular photobioreactor. J Biotechnol 85:289–295

    Article  CAS  Google Scholar 

  • Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  Google Scholar 

  • Del Río E, Acién FG, García-Malea MC, Rivas J, Molina E, Guerrero MG (2005) Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Biotechnol Bioeng 91(7):808–815

    Article  Google Scholar 

  • Del Río E, Acién FG, García-Malea MC, Rivas J, Molina E, Guerrero MG (2008) Efficiency assessment of the one-step production of astaxanthin by the microalga Haematococcus pluvialis. Biotechnol Bioeng 100(2):397–402 DOI https://doi.org/10.1002/bit.21770

    Article  Google Scholar 

  • Demming-Adams B, Adams WW III (2002) Antioxidants in photosynthesis nutrition. Science 298:2149–2153

    Article  Google Scholar 

  • Dweyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz NB, Fogelman AM (2001) Oxygenated carotenoid lutein and the progression of early atherosclerosis. The Los Angeles atherosclerosis study. Circulation 103:2922–2927

    Article  Google Scholar 

  • García-Malea MC, Acién FG, Fernández JM, Cerón MC, Molina E (2006) Continuous production of green cells of Haematococcus pluvialis: modelling of the irradiance effect. Enzyme Microb Technol 38:981–989

    Article  Google Scholar 

  • Guterman H, Vonshak A, Ben-Yaakov S (1990) A macromodel for outdoor algal mass production. Biotechnol Bioeng 35:809–819

    Article  CAS  Google Scholar 

  • Johnson-Down L, Saudny H, Gray-Donald K (2002) Food habits of Canadians: lutein and lycopene intake in the Canadian population. J Am Diet Assoc 102(7):988–991

    Article  Google Scholar 

  • Krinsky NI, Landrum JT, Bone RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Ann Rev Nutr 23:171–201

    Article  CAS  Google Scholar 

  • Mann JE, Myers J (1968) On pigments, growth and photosynthesis of Phaeodactylum tricornutum. J Phycol 4:349–355

    Article  CAS  Google Scholar 

  • Masojidek J, Torzillo G, Koblizek M, Kopecky J, Bernardini P, Sacchi A, Komenda J (1999) Photoadaptation of two members of the Chlorophyta Scenedesmus and Chlorella in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophylls cycle. Planta 209(1):126–135

    Article  CAS  Google Scholar 

  • Molina E, García F, Sánchez JA, Fernández JM, Acién FG, Contreras A (1994) A mathematical model of microalgal growth in light limited chemostat culture. J Chem Technol Biotechnol 61:167–173

    Article  Google Scholar 

  • Molina E, Fernández JM, Acién FG, Sánchez JF, García J, Magán JJ, Pérez J (2005) Production of lutein from the microalga Scenedesmus almeriensis in an industrial size photobioreactor: case study. Oral presentation at the 10th Internacional Conference on Applied Phycology, Kunming, China

  • Piccaglia R, Marotti M, Grandi S (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta. Ind Crops Prod 8(1):45–51

    Article  CAS  Google Scholar 

  • Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell Scientific Publications, London

    Google Scholar 

  • Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier, New York

    Google Scholar 

  • Sánchez JF, Fernández JM, Acién FG, Pérez J, Molina E (2007) Influence of culture conditions in the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43(4):398–405

    Article  Google Scholar 

  • Shi XM, Zhang ZH, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb Technol 27:312–318

    Article  CAS  Google Scholar 

  • Silva S (2004) Luteína, alimento para tu vista. Food Ingredients 80–81

  • VERIS (Vitamin E Research and Information Service) (1997) Efficacy of carotenoids. VERIS Research Summary, August Vitamin E Research and Information Service, LaGrange, Illinois

  • Ziegler RG, Colavito EA, Hartge P, McAdams MJ, Schoenberg JB, Mason TJ, Fraumeni JF (1996) Importance of a-carotene, b-carotene and other phytochemicals in the etiology of lung cancer. J Natl Cancer Inst 88:612–615

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Ministerio de Educación y Ciencia (CTQ2005-00335/PPQ), Junta de Andalucía, Plan Andaluz de Investigación (CVI 131 &173), and Fundación CAJAMAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Acién.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez, J.F., Fernández-Sevilla, J.M., Acién, F.G. et al. Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79, 719–729 (2008). https://doi.org/10.1007/s00253-008-1494-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1494-2

Keywords

Navigation