Skip to main content

Advertisement

Log in

Protein engineering of hydrogenase 3 to enhance hydrogen production

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The large subunit (HycE, 569 amino acids) of Escherichia coli hydrogenase 3 produces hydrogen from formate via its Ni–Fe-binding site. In this paper, we engineered HycE for enhanced hydrogen production by an error-prone polymerase chain reaction (epPCR) using a host that lacked hydrogenase activity via the hyaB hybC hycE mutations. Seven enhanced HycE variants were obtained with a novel chemochromic membrane screen that directly detected hydrogen from individual colonies. The best epPCR variant contained eight mutations (S2T, Y50F, I171T, A291V, T366S, V433L, M444I, and L523Q) and had 17-fold higher hydrogen-producing activity than wild-type HycE. In addition, this variant had eightfold higher hydrogen yield from formate compared to wild-type HycE. Deoxyribonucleic acid shuffling using the three most-active HycE variants created a variant that has 23-fold higher hydrogen production and ninefold higher yield on formate due to a 74-amino acid carboxy-terminal truncation. Saturation mutagenesis at T366 of HycE also led to increased hydrogen production via a truncation at this position; hence, 204 amino acids at the carboxy terminus may be deleted to increase hydrogen production by 30-fold. This is the first random protein engineering of a hydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647

    Article  CAS  PubMed  Google Scholar 

  • Axley MJ, Grahame DA, Stadtman TC (1990) Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem 265:18213–18218

    Article  CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bagramyan K, Trchounian A (2003) Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli. Biochemistry (Mosc) 68:1159–1170

    Article  CAS  Google Scholar 

  • Ballantine SP, Boxer DH (1986) Isolation and characterisation of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur J Biochem 156:277–284

    Article  CAS  PubMed  Google Scholar 

  • Bisaillon A, Turcot J, Hallenbeck PC (2006) The effect of nutrient limitations on hydrogen production by batch cultures of Escherichia coli. Int J Hydrogen Energy 31:1504–1508

    Article  CAS  Google Scholar 

  • Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  CAS  PubMed  Google Scholar 

  • Blokesch M, Paschos A, Theodoratou E, Bauer A, Hube M, Huth S, Böck A (2002) Metal insertion into NiFe-hydrogenases. Biochem Soc Trans 30:674–680

    Article  CAS  PubMed  Google Scholar 

  • Blokesch M, Albracht SP, Matzanke BF, Drapal NM, Jacobi A, Böck A (2004a) The complex between hydrogenase-maturation proteins HypC and HypD is an intermediate in the supply of cyanide to the active site iron of [NiFe]-hydrogenases. J Mol Biol 344:155–167

    Article  CAS  PubMed  Google Scholar 

  • Blokesch M, Paschos A, Bauer A, Reissmann S, Drapal N, Böck A (2004b) Analysis of the transcarbamoylation–dehydration reaction catalyzed by the hydrogenase maturation proteins HypF and HypE. Eur J Biochem 271:3428–3436

    Article  CAS  PubMed  Google Scholar 

  • Blokesch M, Böck A (2006) Properties of the [NiFe]-hydrogenase maturation protein HypD. FEBS Lett 580:4065–4068

    Article  CAS  PubMed  Google Scholar 

  • Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308

    Article  CAS  PubMed  Google Scholar 

  • Burgdorf T, De Lacey AL, Friedrich B (2002) Functional analysis by site-directed mutagenesis of the NAD+-reducing hydrogenase from Ralstonia eutropha. J Bacteriol 184:6280–6288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2:28–33

    Article  CAS  PubMed  Google Scholar 

  • Canada KA, Iwashita S, Shim H, Wood TK (2002) Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation. J Bacteriol 184:344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr R, Alexeeva M, Enright A, Eve TS, Dawson MJ, Turner NJ (2003) Directed evolution of an amine oxidase possessing both broad substrate specificity and high enantioselectivity. Angew Chem Int Ed Engl 42:4807–4810

    Article  CAS  PubMed  Google Scholar 

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Bertain S, Cho HJ, Duck N, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Article  CAS  Google Scholar 

  • Drapal N, Böck A (1998) Interaction of the hydrogenase accessory protein HypC with HycE, the large subunit of Escherichia coli hydrogenase 3 during enzyme maturation. Biochemistry 37:2941–2948

    Article  CAS  PubMed  Google Scholar 

  • Fishman A, Tao Y, Rui L, Wood TK (2005) Controlling the regiospecific oxidation of aromatics via active site engineering of toluene para-monooxygenase of Ralstonia pickettii PKO1. J Biol Chem 280:506–514

    Article  CAS  PubMed  Google Scholar 

  • Forzi L, Hellwig P, Thauer RK, Sawers RG (2007) The CO and CN- ligands to the active site Fe in [NiFe]-hydrogenase of Escherichia coli have different metabolic origins. FEBS Lett 581:3317–3321

    Article  CAS  PubMed  Google Scholar 

  • Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139

    Article  CAS  PubMed  Google Scholar 

  • Hüttenhofer A, Heider J, Böck A (1996) Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome. Nucleic Acids Res 24:3903–3910

    Article  PubMed  PubMed Central  Google Scholar 

  • King PW, Przybyla AE (1999) Response of hya expression to external pH in Escherichia coli. J Bacteriol 181:5250–5256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klibanov AM, Alberti BN, Zale SE (1982) Enzymatic synthesis of formic acid from H2 and CO2 and production of hydrogen from formic acid. Biotechnol Bioeng 24:25–36

    Article  CAS  PubMed  Google Scholar 

  • Lenz O, Zebger I, Hamann J, Hildebrandt P, Friedrich B (2007) Carbamoylphosphate serves as the source of CN, but not of the intrinsic CO in the active site of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha. FEBS Lett 581:3322–3326

    Article  CAS  PubMed  Google Scholar 

  • Leungsakul T, Keenan BG, Yin H, Smets BF, Wood TK (2005) Saturation mutagenesis of 2,4-DNT dioxygenase of Burkholderia sp. strain DNT for enhanced dinitrotoluene degradation. Biotechnol Bioeng 92:416–426

    Article  CAS  PubMed  Google Scholar 

  • Leungsakul T, Johnson GR, Wood TK (2006) Protein engineering of the 4-methyl-5-nitrocatechol monooxygenase from Burkholderia sp. strain DNT for enhanced degradation of nitroaromatics. Appl Environ Microbiol 72:3933–3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2007a) Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2007b) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:879–890

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Vardar G, Self WT, Wood TK (2007c) Inhibition of hydrogen uptake in Escherichia coli by expressing the hydrogenase from the cyanobacterium Synechocystis sp. PCC 6803. BMC Biotechnol 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2008) Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 1:30–39

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Wood TK (2008) Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli. Int J Hydrogen Energy (in press)

  • Magalon A, Böck A (2000) Analysis of the HypC–hycE complex, a key intermediate in the assembly of the metal center of the Escherichia coli hydrogenase 3. J Biol Chem 275:21114–21120

    Article  CAS  PubMed  Google Scholar 

  • Maier T, Jacobi A, Sauter M, Böck A (1993) The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein. J Bacteriol 175:630–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier T, Lottspeich F, Böck A (1995) GTP hydrolysis by HypB is essential for nickel insertion into hydrogenases of Escherichia coli. Eur J Biochem 230:133–138

    Article  CAS  PubMed  Google Scholar 

  • Nagy LE, Meuser JE, Plummer S, Seibert M, Ghirardi ML, King PW, Ahmann D, Posewitz MC (2007) Application of gene-shuffling for the rapid generation of novel [FeFe]-hydrogenase libraries. Biotechnol Lett 29:421–430

    Article  CAS  PubMed  Google Scholar 

  • Paschos A, Glass RS, Böck A (2001) Carbamoylphosphate requirement for synthesis of the active center of [NiFe]-hydrogenases. FEBS Lett 488:9–12

    Article  CAS  PubMed  Google Scholar 

  • Patnaik R, Louie S, Gavrilovic V, Perry K, Stemmer WP, Ryan CM, del Cardayré S (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20:707–712

    Article  CAS  PubMed  Google Scholar 

  • Penfold DW, Sargent F, Macaskie LE (2006) Inactivation of the Escherichia coli K-12 twin-arginine translocation system promotes increased hydrogen production. FEMS Microbiol Lett 262:135–137

    Article  CAS  PubMed  Google Scholar 

  • Richard DJ, Sawers G, Sargent F, McWalter L, Boxer DH (1999) Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 145(Pt 10):2903–2912

    Article  CAS  PubMed  Google Scholar 

  • Rossmann R, Sauter M, Lottspeich F, Böck A (1994) Maturation of the large subunit (HYCE) of Escherichia coli hydrogenase 3 requires nickel incorporation followed by C-terminal processing at Arg537. Eur J Biochem 220:377–384

    Article  CAS  PubMed  Google Scholar 

  • Rui L, Kwon Y-M, Fishman A, Reardon KF, Wood TK (2004) Saturation mutagenesis of toluene ortho-monooxygenase of Burkholderia cepacia G4 for enhanced 1-naphthol synthesis and chloroform degradation. Appl Environ Microbiol 70:3246–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter M, Böhm R, Böck A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532

    Article  CAS  PubMed  Google Scholar 

  • Sawers RG, Ballantine SP, Boxer DH (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibert M, Flynn T, Benson D, Tracy E, Ghirardi M (1998) Biohydrogen. Plenum, New York, pp 227–234

    Google Scholar 

  • Self WT, Hasona A, Shanmugam KT (2004) Expression and regulation of a silent operon, hyf, coding for hydrogenase 4 isoenzyme in Escherichia coli. J Bacteriol 186:580–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Loo B, Spelberg JH, Kingma J, Sonke T, Wubbolts MG, Janssen DB (2004) Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. Chem Biol 11:981–990

    Article  PubMed  CAS  Google Scholar 

  • Vardar-Schara G, Maeda T, Wood TK (2008) Metabolically-engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol 1:107–125

    Article  CAS  PubMed  Google Scholar 

  • Vardar G, Wood TK (2005) Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for enhanced chlorinated ethene degradation and o-xylene oxidation. Appl Microbiol Biotechnol 68:510–517

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Charon MH, Piras C, Hatchikian EC, Frey M, Fontecilla-Camps JC (1995) Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–587

    Article  CAS  PubMed  Google Scholar 

  • Woods DD (1936) Hydrogenlyases: the synthesis of formic acid by bacteria. Biochem J 30:515–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2005) Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl Environ Microbiol 71:6762–6768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2006) Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl Microbiol Biotechnol 73:67–72

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the Keio clones sent by the National of Institute of Genetics (Japan), for the chemochromic membrane sensor provided by Dr. Hilton G. Pryce Lewis of GVD, and for protein modeling provided by Dr. Thammajun Leungsakul. This research was supported by DARPA (HR0011-06-1-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maeda, T., Sanchez-Torres, V. & Wood, T.K. Protein engineering of hydrogenase 3 to enhance hydrogen production. Appl Microbiol Biotechnol 79, 77–86 (2008). https://doi.org/10.1007/s00253-008-1416-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1416-3

Keywords

Navigation