Skip to main content
Log in

Expression and purification of human urodilatin by small ubiquitin-related modifier fusion in Escherichia coli

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To prevent in vivo degradation, small peptides are usually expressed in fusion proteins from which target peptides can be released by proteolytic or chemical reagents. In this report, small ubiquitin-related modifier (SUMO) linked with a hexa-histidine tag was used as a fusion partner for the production of recombinant human urodilatin, a hormone for the treatment of acute decompensated heart failure. The fusion protein, which was overexpressed mainly as inclusion bodies in Escherichia coli, constituted about 25% of the total cell proteins. After purification by Ni-sepharose affinity chromatography and renaturation in refolding buffer, the fusion protein was cleaved with SUMO protease 1. Urodilatin was separated from the fusion partner by the subtractive chromatography using Ni-sepharose once again, and then further purified with reverse-phase high performance liquid chromatography. In vitro activity assay demonstrated that the recombinant urodilatin had a potent vasodilatory effect on rabbit aortic strips with an EC50 of 1.77 ± 0.53 μg/ml, which was similar to that of the synthetic urodilatin standard. The expression strategy presented in this study allows convenient high yield and easy purification of small recombinant peptides with native sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baumanis V, Jansone I, Skangals A (1997) Synthesis of recombinant atrial natriuretic peptide (rANP) using hybrid fusion protein phage fr coat/ANP (CP/ANP). Peptides 18:1229–1235

    Article  CAS  Google Scholar 

  • Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J (1998) Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280:275–286

    Article  CAS  Google Scholar 

  • Beltowdski J, Wojcicka G (2002) Regulation of renal tubular sodium transport by cardiac natriuretic peptides: two decades of research. Med Sci Monit 8: RA39–52

    Google Scholar 

  • Butt TR, Edavettal SC, Hall JP, Mattern MR (2005) SUMO fusion technology for difficult-to-express proteins. Protein Expr Purif 43:1–9

    Article  CAS  Google Scholar 

  • Davis GD, Elisee C, Newham DM, Harrison RG (1999) New fusion protein systems designed to give soluble expression in Escherichia coli. Biotechnol Bioeng 65:382–388

    Article  CAS  Google Scholar 

  • Forssmann WG, Richter R, Meyer M (1998) The endocrine heart and natriuretic peptides: historchemistry, cell biology, and functional aspects of the renal urodilatin system. Histochem Cell Biol 110:335–357

    Article  CAS  Google Scholar 

  • Forssmann WG, Meyer M, Gorssmann K (2001) The renal urodilatin system: clinical implications. Cardiovasc Res 51:450–462

    Article  CAS  Google Scholar 

  • Gottesman S (1989) Genetics of proteolysis in Escherichia coli. Annu Rev Genet 23:163–198

    Article  CAS  Google Scholar 

  • Hanning G, Makrides SC (1998) Strategies for optimizing heterologous protein expression in Escherichia coli. Trends Biotechnol 16:54–60

    Article  Google Scholar 

  • Johnson ES, Blobel G (1999) Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol 147:981–994

    Article  CAS  Google Scholar 

  • Kuliopulos A, Walsh J (1994) Production, purification and cleavage of tandem repeats of tandem proteins. J Am Chem Soc 116:4599–4607

    Article  CAS  Google Scholar 

  • Lamsoul I, Lodewick J, Lebrun S, Brasseur R, Burny A, Gaynor RB, Bex F (2005) Exclusive ubiquitination and sumoylation on overlapping lysine residues mediate NF-kappaB activation by the human T-cell leukemia virus tax oncoprotein. Mol Cell Biol 25:10391–10406

    Article  CAS  Google Scholar 

  • Lavallie ER, McCoy JM (1995) Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol 6:501–506

    Article  CAS  Google Scholar 

  • Li SJ, Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398:246–251

    Article  CAS  Google Scholar 

  • Li SJ, Hochstrasser M (2003) The Ulp1 SUMO isopeptidase: distinct domains required for viability, nuclear envelope localization, and substrate specificity. J Cell Biol 160:1069–1081

    Article  CAS  Google Scholar 

  • Liew OW, Ching Chong JP, Yandle TG, Brennan SO (2005) Preparation of recombinant thioredoxin fused N-terminal proCNP: Analysis of enterokinase cleavage products reveals new enterokinase cleavage sites. Protein Expr Purif 41:332–340

    Article  CAS  Google Scholar 

  • Loll PJ (2003) Membrane protein structural biology: the high throughput challenge. J Struct Biol 142:144–153

    Article  CAS  Google Scholar 

  • Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR (2004) SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics 5:75–86

    Article  CAS  Google Scholar 

  • Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo X, Butt TR (2006) Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Sci 15:182–189

    Article  CAS  Google Scholar 

  • Nilsson J, Stahl S, Lundeberg J (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif 11:1–16

    Article  CAS  Google Scholar 

  • Ohshima T, Shimotohno K (2003) Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4. J Biol Chem 278:50833–50842

    Article  CAS  Google Scholar 

  • Park CJ, Lee JH, Hong SS, Lee HS, Kim SC (1998) High-level expression of the angiotensin-converting-enzyme-inhibiting peptide, YG-1, as tandem multimers in Escherichia coli. Appl Microbiol Biotechnol 50:71–76

    Article  CAS  Google Scholar 

  • Sereikaite J, Statkute A, Morkunas M, Radzevicius K, Borromeo V, Secchi C, Bumelis VA (2007) Production of recombinant mink growth hormone in E. coli.. Appl Microbiol Biotechnol 74:316–23

    Article  CAS  Google Scholar 

  • Stevens RC (2000) Design of high-throughput methods of protein production for structural biology. Structure 8:R177–185

    Article  CAS  Google Scholar 

  • Sun Z, Chen J, Yao H, Liu L, Wang J, Zhang J, Liu JN (2005) Use of Ssp dnaB derived mini-intein as a fusion partner for production of recombinant human brain natriuretic peptide in Escherichia coli. Protein Expr Purif 43:26–32

    Article  CAS  Google Scholar 

  • Sun Z, Lu W, Tang Y, Zhang J, Chen J, Deng H, Li X, Liu JN (2007) Expression, expression and characterization of human urodilatin in Escherichia coli. Protein Expr Purif 55:312–318

    Article  CAS  Google Scholar 

  • Tian ZG, Teng D, Yang YL, Luo J, Feng XJ, Fan Y, Zhang F, Wang JH (2007) Multimerization and fusion expression of bovine lactoferricin derivative LfcinB15-W4,10 in Escherichia coli. Appl Microbiol Biotechnol 75:117–124

    Article  CAS  Google Scholar 

  • Weeks SD, Drinker M, Loll PJ (2007) Ligation independent cloning vectors for expression of SUMO fusions. Protein Expr Purif 53:40–50

    Article  CAS  Google Scholar 

  • Wood LD, Irvin BJ, Nucifora G, Luce KS, Hiebert SW (2003) Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci U S A 100:3257–62

    Article  CAS  Google Scholar 

  • Xu Z, Zhong Z, Huang L, Peng L, Wang F, Cen P (2006) High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Appl Microbiol Biotechnol 72:471–479

    Article  CAS  Google Scholar 

  • Zuo X, Li S, Hall J, Mattern MR, Tran H, Shoo J, Tan R, Weiss SR, Butt TR (2005) Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli. J Struct Funct Genomics 6:103–111

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Program for New Century Excellent Talents in University, Ministry of Education of China (ZY.S, 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Ning Liu.

Additional information

Z. Sun and Z. Xia contribute equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Xia, Z., Bi, F. et al. Expression and purification of human urodilatin by small ubiquitin-related modifier fusion in Escherichia coli . Appl Microbiol Biotechnol 78, 495–502 (2008). https://doi.org/10.1007/s00253-007-1330-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1330-0

Keywords

Navigation