Skip to main content
Log in

Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Previous studies revealed the abundance of Pseudomonas sp. in the microbial community of a microbial fuel cell (MFC). These bacteria can transfer electrons to the electrode via self-produced phenazine-based mediators. A MFC fed with acetate where several Pseudomonas sp. were present was found to be rich in a Gram-positive bacterium, identified as Brevibacillus sp. PTH1. Remarkably, MFCs operated with only the Brevibacillus strain in their anodes had poor electricity generation. Upon replacement of the anodic aqueous part of Brevibacillus containing MFCs with the cell-free anodic supernatants of MFCs operated with Pseudomonas sp. CMR12a, a strain producing considerable amounts of phenazine-1-carboxamide (PCN) and biosurfactants, the electricity generation was improved significantly. Supernatants of Pseudomonas sp. CMR12a_Reg, a regulatory mutant lacking the ability to produce PCN, had no similar improvement effect. Purified PCN, together with rhamnolipids as biosurfactants (1 mg L−1), could clearly improve electricity generation by Brevibacillus sp. PTH1, as well as enable this bacterium to oxidize acetate with concomitant reduction of ferric iron, supplied as goethite (FeOOH). When added alone, PCN had no observable effects on Brevibacillus’ electron transfer. This work demonstrates that metabolites produced by Pseudomonas sp. enable Gram-positive bacteria to achieve extracellular electron transfer. Possibly, this bacterial interaction is a key process in the anodic electron transfer of a MFC, enabling Brevibacillus sp. PTH1 to achieve its dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40:3388–3394

    Article  CAS  PubMed  Google Scholar 

  • Allen RM, Bennetto HP (1993) Microbial fuel-cells—electricity production from carbohydrates. Appl Biochem Biotechnol 39:27–40

    Article  Google Scholar 

  • Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262–3268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57:1210–1223

    Article  CAS  PubMed  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boon N, Goris J, De Vos P, Verstraete W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66:2906–2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boon N, De Windt W, Verstraete W, Top EM (2002) Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiol Ecol 39:101–112

    CAS  PubMed  Google Scholar 

  • De Jonghe K, De Dobbelaere I, Sarrazyn R, Hofte M (2005) Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1. Plant Pathol 54:219–226

    Article  Google Scholar 

  • Fernandez RO, Pizarro RA (1997) High-performance liquid chromatographic analysis of Pseudomonas aeruginosa phenazines. J Chromatogr A 771:99–104

    Article  CAS  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg A, Clesceri LS, Eaton AD (1992) Standard methods for the examination of water and wastewater, 18st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant-Microb Interact 14:1351–1363

    Article  CAS  Google Scholar 

  • Hernandez ME, Newman DK (2001) Extracellular electron transfer. Cell Mol Life Sci 58:1562–1571

    Article  CAS  PubMed  Google Scholar 

  • Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain DK, Collinsthompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279

    Article  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microb Biotechnol 9:127–131

    Google Scholar 

  • King EO, Ward MK, Raney DC (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic-matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan MT, Martinko J, Parker J (2004) Brock biology of microorganisms. Pearson, NJ

    Google Scholar 

  • Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milliken CE, May HD (2007) Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl Microbiol Biotechnol 73:1180–1189

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden A (1993) Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ovreas L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Perneel M, Heyrman J, Adiobo A, De Maeyer K, Raaijmakers JM, De Vos P, Höfte M (2007) Characterization of CMR5c and CMR12a, new fluorescent Pseudomonas strains from the cocoyam rhizosphere that produce both biosurfactants and phenazines. J Appl Microbiol 103:1007–1020

    Article  CAS  PubMed  Google Scholar 

  • Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N, Verstraete W (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292

    Article  CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabaey K, Boon N, Hofte M, Verstraete W (2005a) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Tech 39:3401–3408

    Article  CAS  Google Scholar 

  • Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005b) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52:515–523

    Article  CAS  PubMed  Google Scholar 

  • Rao JR, Richter GJ, Vonsturm F, Weidlich E (1976) Performance of glucose electrodes and characteristics of different biofuel cell constructions. Bioelectrochem Bioenerg 3:139–150

    Article  CAS  Google Scholar 

  • Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by a grant from the Flanders Research Foundation (FWO project G.0172.05). The authors would like to express deep thanks to Siska Maertens and Petra Van Damme for their valuable assistance. The valuable comments by Marc Verhaege and Maaike Perneel are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, T.H., Boon, N., Aelterman, P. et al. Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77, 1119–1129 (2008). https://doi.org/10.1007/s00253-007-1248-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1248-6

Keywords

Navigation