Skip to main content

Advertisement

Log in

Biocatalytic racemization of sec-alcohols and α-hydroxyketones using lyophilized microbial cells

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biocatalytic racemization of aliphatic and aryl-aliphatic sec-alcohols and α-hydroxyketones (acyloins) was accomplished using whole resting cells of bacteria, fungi, and one yeast. The mild (physiological) reaction conditions ensured the suppression of undesired side reactions, such as elimination or condensation. Cofactor and inhibitor studies suggest that the racemization proceeds through an equilibrium-controlled enzymatic oxidation–reduction sequence via the corresponding ketones or α-diketones, respectively, which were detected in various amounts. Ketone formation could be completely suppressed by exclusion of molecular oxygen.

Biocatalytic racemization whole microbial cells

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1

Similar content being viewed by others

Notes

  1. No racemization activity was detected in the following strains: Achromobacter sp. FCC 175, Arthrobacter sp. DSM 7325, Bacillus subtilis 168 DSM 10, Botryosphaeria rhodina DSM 1160, Candida boidinii DSM 70026, Corynespora cassiicola DSM 62475, Cunninghamella blakesleeana DSM 1906, Debaryomyces robertsiae DSM 70870, Fusarium solani FCC 073, Glomerella cingulata DSM 1166, Methylobacterium sp. SM 1793 FCC 031, Mortierella alpina ATCC 8979, Mucor plumbeus CBS 110.16, Mycobacterium gilvum DSM 9487, Mycobacterium paraffinicum NCIMB 10420, Penicillium simplicissimum FCC 072, Pichia angusta DSM 70277, Rhodococcus ruber DSM 44540, R. ruber DSM 44539, R. ruber DSM 43338, Rhodotorula mucilaginosa DSM 70404, Sphingomonas sp. HXN 200 FCC 139, and Yarrowia lipolytica DSM 70651

  2. R. equi IFO 3730 may cause zoonotic infections that affect grazing animals, mainly horses and foals, and is therefore a class II microorganism. Although it is an unlikely cause of infection in humans who are immunocompetent, it may be pathogenic to immunocompromised patients, see: <http://www.nbrc.nite.go.jp/e/index.html>

References

  • Berkessel A, Sebastian-Ibarz ML, Mueller T (2006) Lipase/aluminum-catalyzed dynamic kinetic resolution of secondary alcohols. Angew Chem Int Ed Engl 45:6567–6570

    Article  CAS  PubMed  Google Scholar 

  • Boren L, Martin-Matute B, Xu Y, Cordova A, Baeckvall JE (2006) (S)-Selective kinetic resolution and chemoenzymatic dynamic kinetic resolution of secondary alcohols. Chem Eur J 12:225–232

    Article  CAS  Google Scholar 

  • Cheng Y, Zhang F, Rano TA, Lu Z, Scheleif WA, Gabryelski L, Olsen DB, Stahlhunt M, Rutkowski CA, Lin JH, Jin L, Emini EA, Chapman KT, Tata JR (2002) Indinavir analogues with blocked metabolism sites as HIV protease inhibitors with improved pharmacological profiles and high potency against PI-Resistant viral strains. Bioorg Med Chem Lett 12:2419–2422

    Article  CAS  PubMed  Google Scholar 

  • Demir AS, Hamamci H, Sesenoglu O, Aydogan F, Capanoglu D, Neslihanoglu R (2001) Simple chemoenzymatic access to enantiopure pharmacologically interesting (R)-2-hydroxypropiophenones. Tetrahedron Asymmetry 12:1953–1956

    Article  CAS  Google Scholar 

  • Ebbers EJ, Ariaans GJA, Houbiers JPM, Bruggink A, Zwanenburg B (1997) Controlled racemization of optically active organic compounds: prospects for asymmetric transformation. Tetrahedron 53:9417–9476

    Article  CAS  Google Scholar 

  • Engel S, Vyazmensky M, Geresh S, Barak Z, Chipman DM (2003) Acetohydroxyacid synthase: a new enzyme for chiral synthesis of R-phenylacetylcarbinol. Biotechnol Bioeng 83:640–833

    Article  CAS  Google Scholar 

  • Faber K (2001) Non-sequential processes for the transformation of a racemate into a single stereoisomeric product: proposal for stereochemical classification. Chem Eur J 7:504–510

    Article  Google Scholar 

  • Felfer U, Goriup M, Koegl MF, Wagner U, Larissegger-Schnell B, Faber K, Kroutil W (2005) The substrate spectrum of mandelate racemase: minimum structural requirements for substrates and substrate model. Adv Synth Catal 347: 951–956

    Article  CAS  Google Scholar 

  • Giovannini PP, Medici A, Bergamini CM, Rippa M (1996) Properties of diacetyl (acetoin) reductase from Bacillus stearothermophilus. Bioorg Med Chem 4:1197–1201

    Article  CAS  PubMed  Google Scholar 

  • Glueck SM, Larissegger-Schnell B, Csar K, Kroutil W, Faber K (2005a) Biocatalytic racemisation of α-hydroxycarboxylic acids at physiological conditions. Chem Commun 14:1904–1905

    Article  Google Scholar 

  • Glueck SM, Pirker M, Nestl BM, Ueberbacher BT, Larissegger-Schnell B, Csar K, Hauer B, Stuermer R, Kroutil W, Faber K (2005b) Biocatalytic racemization of aliphatic, arylaliphatic, and aromatic α-hydroxycarboxylic acids. J Org Chem 70:4028–4032

    Article  CAS  PubMed  Google Scholar 

  • Goswami A, Mirfakhrae KD, Patel RN (1999) Deracemization of racemic 1,2-diol by biocatalytic stereoinversion. Tetrahedron Asymmetry 10:4239–4244

    Article  CAS  Google Scholar 

  • Gruber CC, Lavandera I, Faber K, Kroutil W (2006) From a racemate to a single enantiomer: deracemization by stereoinversion. Adv Synth Catal 348:1789–1805

    Article  CAS  Google Scholar 

  • Hata H, Shimizu S, Hattori S, Yamada H (1990) Stereoselective reduction of diketones by a novel carbonyl reductase from Candida parapsilosis. J Org Chem 55:4377–4380

    Article  CAS  Google Scholar 

  • Heidlas J, Tressl R (1990) Purification and properties of two oxidoreductases catalyzing the enantioselective reduction of diacetyl and other diketones from baker’s yeast. Eur J Biochem 188:165–174

    Article  CAS  PubMed  Google Scholar 

  • Hirscher T, Gocke D, Fernandez M, Hoyos P, Alcantara AR, Sinisterra JV, Hartmeier W, Ansorge-Schumacher MB (2005) Stereoselective synthesis of novel benzoins catalysed by benzaldehyde lyase in a gel-stabilised two-phase system. Tetrahedron 61:7378–7383

    Article  CAS  Google Scholar 

  • Hoyos P, Fernandez M, Sinisterra JV, Alcantara AR (2006) Dynamic kinetic resolution of benzoins by lipase-metal combo catalysis. J Org Chem 71:7632–7637

    Article  CAS  PubMed  Google Scholar 

  • Hummel W, Kula MR (1989) Dehydrogenases for the synthesis of chiral compounds. Eur J Biochem 184:1–13

    Article  CAS  PubMed  Google Scholar 

  • Hummel W, Schuette H, Kula MR (1985) D-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei. Appl Microbiol Biotechnol 21:7–15

    CAS  Google Scholar 

  • Inoue K, Makino Y, Itoh N (2005) Production of (R)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent Leifsonia alcohol dehydrogenase (LSADH). Tetrahedron Asymmetry 16:2539–2549

    Article  CAS  Google Scholar 

  • Jiang R, Bommarius AS (2004) An enzymatic process to α-ketoglutarate from l-glutamate: the coupled system l-glutamate dehydrogenase/NADH oxidase. Tetrahedron Asymmetry 15:2939–2944

    Article  CAS  Google Scholar 

  • Jiang R, Riebel BR, Bommarius AS (2005) Comparison of alkyl hydroperoxide reductase (AhpR) and water-forming NADH oxidase from Lactococcus lactis ATCC 19435. Adv Synth Catal 347:1139–1146

    Article  CAS  Google Scholar 

  • Kallwass HKW (1992) Potential of R-2-Hydroxyisocaproate dehydrogenase from Lactobacillus casei for stereospecific reductions. Enzyme Microb Technol 14:28–35

    Article  CAS  Google Scholar 

  • Kaluzna IA, Feske BD, Wittayanan W, Ghiviringa I, Stewart JD (2005a) Stereoselective, biocatalytic reductions of α-chloro-β−keto esters. J Org Chem 70:342–345

    Article  CAS  PubMed  Google Scholar 

  • Kaluzna IA, Rozzell JD, Kambourakis S (2005b) Ketoreductases: stereoselective catalysts for the facile synthesis of chiral alcohols. Tetrahedron Asymmetry 16:3682–3689

    Article  CAS  Google Scholar 

  • Kim N, Ko SB, Kwon MS, Kim MJ, Park J (2005) Air-stable racemization catalyst for dynamic kinetic resolution of secondary alcohols at room temperature. Org Lett 7:4523–4526

    Article  CAS  PubMed  Google Scholar 

  • Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Curr Opin Chem Biol 8:120–126

    Article  CAS  PubMed  Google Scholar 

  • Larissegger-Schnell B, Faber K, Kroutil W (2003) Enzymatic racemisation and its application to synthetic biotransformations. Adv Synth Catal 345:653–666

    Article  CAS  Google Scholar 

  • Lunardi I, Conceicao GJA, Moran PJS, Rodrigues JAR (2005) Highly stereoselective preparation of (3R,4S)-3,4-chromanediol by deracemization of (±)-3-hydroxy-4-chromanone by Trichosporon cutaneum. Tetrahedron Asymmetry 16:2515–2519

    Article  CAS  Google Scholar 

  • Mueller M, Wolberg M, Schubert T, Hummel W (2005) Enzyme-catalyzed regio- and enantioselective ketone reductions. In: Advances in Biochemical Engineering/Biotechnology (eds) Technology transfer in biotechnology: from lab to industry to production. Springer, Berlin Heidelberg New York, pp 261–287

    Google Scholar 

  • Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones by biocatalysts. Tetrahedron Asymmetry 14:2659–2681

    Article  CAS  Google Scholar 

  • Nestl BM, Kroutil W, Faber K (2006a) Biocatalytic racemization of α-hydroxy ketones (Acyloins) at physiological conditions using Lactobacillus paracasei DSM 20207. Adv Synth Catal 348:873–876

    Article  CAS  Google Scholar 

  • Nestl BM, Glueck SM, Hall M, Kroutil W, Stuermer R, Hauer B, Faber K (2006b) Biocatalytic racemization of (Hetero)aryl-aliphatic α-hydroxycarboxylic acids by Lactobacillus spp. Proceeds via an oxidation-reduction sequence. Eur J Org Chem 2006:4573–4577

    Article  CAS  Google Scholar 

  • Oedman P, Wessjohann LA, Bornscheuer UT (2005) Chemoenzymatic dynamic kinetic resolution of acyloins. J Org Chem 70:9551–9555

    Article  CAS  Google Scholar 

  • Pamies O, Baeckvall JE (2003) Combination of enzymes and metal catalysts. A powerful approach in asymmetric catalysis. Chem Rev 103:3247–3261

    Article  CAS  PubMed  Google Scholar 

  • Patel RN (2001) Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Curr Opin Biotechnol 12:587–604

    Article  CAS  PubMed  Google Scholar 

  • Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2002) Cofactor regeneration of NAD+ from NADH: novel water-forming NADH oxidases. Adv Synth Catal 344:1156–1168

    Article  CAS  Google Scholar 

  • Riebel BR, Gibbs PR, Wellborn WB, Bommarius AS (2003) Cofactor regeneration of both NAD+ from NADH and NADP+ from NADPH:NADH oxidase from Lactobacillus sanfranciscensis. Adv Synth Catal 345:707–712

    Article  CAS  Google Scholar 

  • Riermeier TH, Gross P, Monsees A, Hoff M, Trauthwein H (2005) Dynamic kinetic resolution of secondary alcohols with a readily available ruthenium-based racemization catalyst. Tetrahedron Lett 46:3404–3406

    Article  CAS  Google Scholar 

  • Rosche B, Breuer M, Hauer B, Rogers PL (2004) Biphasic aqueous/organic biotransformation of acetaldehyde and benzaldehyde by Zymomonas mobilis pyruvate decarboxylase. Biotechnol Bioeng 86:788–794

    Article  CAS  PubMed  Google Scholar 

  • Saratani Y, Uheda E, Yamamoto H, Nishimura A, Yoshizako F (2003) Purification and properties of a carbonyl reductase involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanoate from Cylindrocarpon sclerotigenum IFO 31855. Biosci Biotechnol Biochem 67:1417–1420

    Article  CAS  PubMed  Google Scholar 

  • Sarrazin E, Dubourdieu D, Darriet P (2007) Characterization of key-aroma compounds of botrytized wines, influence of grape botrytization. Food Chem 103:536–545

    Article  CAS  Google Scholar 

  • Scheid G, Kuit W, Ruijter E, Orru RVA, Henke E, Bornscheuer U, Wessjohann LA (2004) A new route to protected acyloins and their enzymatic resolution with lipases. Eur J Org Chem 2004:1063–1074

    Article  CAS  Google Scholar 

  • Schuette H, Hummel W, Kula MR (1984) L-2-hydroxyisocaproate dehydrogenase-a new enzyme from Lactobacillus confusus for the stereospecific reduction of 2-ketocarboxylic acids. Appl Microbiol Biotechnol 19:167–176

    Article  CAS  Google Scholar 

  • Shibata K, Shirassuna K, Motegi K, Hera Y, Abe H, Yamada R (2000) Purification and properties of alanine racemase from crayfish Procambarus clarkii. Comp Biochem Physiol B 126:599–608

    Article  CAS  PubMed  Google Scholar 

  • Simon H, Bader J, Guenther H, Neumann S, Thanos J (1985) Chiral compounds synthesized by biocatalytic reductions [New Synthetic Methods (51)]. Angew Chem Int Ed Engl 24:539–553

    Article  Google Scholar 

  • Smallridge AJ, Trewhalla MA, Maurice A, Wilkinson AK (2003) Methods for the synthesis of amines such as ephedrine and intermediates via reductive animation of ketones. Patent WO 2003018531 A1 20030306

  • Spies MA, Woodward JJ, Watnik MR, Toney MD (2004) Alanine racemase free energy profiles from global analyses of progress curves. J Am Chem Soc 126:7464–7475

    Article  CAS  PubMed  Google Scholar 

  • Stampfer W, Kosjek B, Moitzi C, Kroutil W, Faber K (2002) Biocatalytic asymmetric hydrogen transfer. Angew Chem Int Ed Engl 41:1014–1017

    Article  CAS  PubMed  Google Scholar 

  • Tanner ME (2002) Understanding nature’s strategies for enzyme-catalyzed racemization and epimerization. Acc Chem Res 35:237–246

    Article  CAS  PubMed  Google Scholar 

  • Turner NJ (2004) Enzyme catalysed deracemization and dynamic kinetic resolution reactions. Curr Opin Chem Biol 8:114–119

    Article  CAS  PubMed  Google Scholar 

  • van Nispen SFGM, van Buijtenen J, Vekemans JAJM, Meuldijk J, Hulshof LA (2006) Efficient dynamic kinetic resolution of secondary alcohols with a novel tetrafluorosuccinato ruthenium complex. Tetrahedron Asymmetry 17:2299–2305

    Article  CAS  Google Scholar 

  • Wolken WAM, ten Have R, van der Werf MJ (2000) Amino acid-catalyzed conversion of citral: cis-trans isomerization and its conversion into 6-methyl-5-hepten-2-one and acetaldehyde. J Agric Food Chem 48:4305–5401

    Article  CAS  Google Scholar 

  • Wuyts S, Temmerman K De, Vos DE De, Jacobs PA (2005) Acid zeolites as alcohol racemization catalysts: screening and application in biphasic dynamic kinetic resolution. Chem Eur J 11:386–397

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed in cooperation between project P18537-B03 of the Austrian Science Fund (FWF) and BASF AG (Ludwigshafen) within the Research Centre Applied Biocatalysis. Financial support by the FWF, the FFG, the City of Graz, and the Province of Styria is gratefully acknowledged. Sonja Heumann and Georg Gübitz from the Graz University of Technology are cordially thanked for their valuable advice in applied microbiology and for the donation of Nocardia G and Nocardia H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Faber.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nestl, B.M., Voss, C.V., Bodlenner, A. et al. Biocatalytic racemization of sec-alcohols and α-hydroxyketones using lyophilized microbial cells. Appl Microbiol Biotechnol 76, 1001–1008 (2007). https://doi.org/10.1007/s00253-007-1071-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1071-0

Keywords

Navigation