Skip to main content

Advertisement

Log in

HIV-1 reverse transcriptase inhibitors

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Reverse transcriptase (RT) is one of the three enzymes encoded by the human immunodeficiency virus type 1 (HIV-1), the etiological agent of AIDS. Together with protease inhibitors, drugs inhibiting the RNA- and DNA-dependant DNA polymerase activity of RT are the major components of highly active antiretroviral therapy (HAART), which has dramatically reduced mortality and morbidity of people living with HIV-1/AIDS in developed countries. In this study, we focus on RT inhibitors approved by the US Food and Drugs Administration (FDA) or in phases II and III clinical trials. RT inhibitors belong to two main classes acting by distinct mechanisms. Nucleoside RT inhibitors (NRTIs) lack a 3′ hydroxyl group on their ribose or ribose mimic moiety and thus act as chain terminators. Non-NRTIs bind into a hydrophobic pocket close to the polymerase active site and inhibit the chemical step of the polymerization reaction. For each class of inhibitors, we review the mechanism of action, the resistance mechanisms selected by the virus, and the side effects of the drugs. We also discuss the main perspectives for the development of new RT inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson JP, Daifuku R, Loeb LA (2004a) Viral error catastrophe by mutagenic nucleosides. Annu Rev Microbiol 58:183–205

    CAS  PubMed  Google Scholar 

  • Anderson PL, Kakuda TN, Lichtenstein KA (2004b) The cellular pharmacology of nucleoside- and nucleotide-analogue reverse-transcriptase inhibitors and its relationship to clinical toxicities. Clin Infect Dis 38:743–753

    CAS  PubMed  Google Scholar 

  • Andries K, Azijn H, Thielemans T, Ludovici D, Kukla M, Heeres J, Janssen P, De Corte B, Vingerhoets J, Pauwels R, de Bethune MP (2004) TMC125, a novel next-generation nonnucleoside reverse transcriptase inhibitor active against nonnucleoside reverse transcriptase inhibitor-resistant human immunodeficiency virus type 1. Antimicrob Agents Chemother 48:4680–4686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arion D, Kaushik N, McCormick S, Borkow G, Parniak MA (1998) Phenotypic mechanism of HIV-1 resistance to 3′-azido-3′-deoxythymidine (AZT): increased polymerization processivity and enhanced sensitivity to pyrophosphate of the mutant viral reverse transcriptase. Biochemistry 37:15908–15917

    CAS  PubMed  Google Scholar 

  • Arion D, Sluis-Cremer N, Parniak MA (2000) Mechanism by which phosphonoformic acid resistance mutations restore 3′-azido-3′-deoxythymidine (AZT) sensitivity to AZT-resistant HIV-1 reverse transcriptase. J Biol Chem 275:9251–9255

    CAS  PubMed  Google Scholar 

  • Balzarini J (2004) Current status of the non-nucleoside reverse transcriptase inhibitors of human immunodeficiency virus type 1. Curr Top Med Chem 4:921–944

    CAS  PubMed  Google Scholar 

  • Balzarini J, Herdewijn P, De Clercq E (1989) Differential patterns of intracellular metabolism of 2′,3′-didehydro-2′,3′-dideoxythymidine and 3′-azido-2′,3′-dideoxythymidine, two potent anti-human immunodeficiency virus compounds. J Biol Chem 264:6127–6133

    CAS  PubMed  Google Scholar 

  • Balzarini J, Aquaro S, Perno CF, Witvrouw M, Holy A, De Clercq E (1996) Activity of the (R)-enantiomers of 9-(2-phosphonylmethoxypropyl)-adenine and 9-(2-phosphonylmethoxypropyl)-2,6-diaminopurine against human immunodeficiency virus in different human cell systems. Biochem Biophys Res Commun 219:337–341

    CAS  PubMed  Google Scholar 

  • Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    CAS  PubMed  Google Scholar 

  • Bazmi HZ, Hammond JL, Cavalcanti SC, Chu CK, Schinazi RF, Mellors JW (2000) In vitro selection of mutations in the human immunodeficiency virus type 1 reverse transcriptase that decrease susceptibility to (−)-beta-d-dioxolane-guanosine and suppress resistance to 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 44:1783–1788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becher F, Pruvost A, Goujard C, Guerreiro C, Delfraissy JF, Grassi J, Benech H (2002a) Improved method for the simultaneous determination of d4T, 3TC and ddl intracellular phosphorylated anabolites in human peripheral-blood mononuclear cells using high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 16:555–565

    CAS  PubMed  Google Scholar 

  • Becher F, Schlemmer D, Pruvost A, Nevers MC, Goujard C, Jorajuria S, Guerreiro C, Brossette T, Lebeau L, Creminon C, Grassi J, Benech H (2002b) Development of a direct assay for measuring intracellular AZT triphosphate in humans peripheral blood mononuclear cells. Anal Chem 74:4220–4227

    CAS  PubMed  Google Scholar 

  • Birkus G, Hitchcock MJ, Cihlar T (2002) Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 46:716–723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer PL, Julias JG, Marquez VE, Hughes SH (2005) Fixed conformation nucleoside analogs effectively inhibit excision-proficient HIV-1 reverse transcriptases. J Mol Biol 345:441–450

    CAS  PubMed  Google Scholar 

  • Buckheit RW Jr, White EL, Fliakas-Boltz V, Russell J, Stup TL, Kinjerski TL, Osterling MC, Weigand A, Bader JP (1999) Unique anti-human immunodeficiency virus activities of the nonnucleoside reverse transcriptase inhibitors calanolide A, costatolide, and dihydrocostatolide. Antimicrob Agents Chemother 43:1827–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes VW, Emini EA, Schleif WA, Condra JH, Schneider CL, Long WJ, Wolfgang JA, Graham DJ, Gotlib L, Schlabach AJ et al (1994) Susceptibilities of human immunodeficiency virus type 1 enzyme and viral variants expressing multiple resistance-engendering amino acid substitutions to reserve transcriptase inhibitors. Antimicrob Agents Chemother 38:1404–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cahn P, Cassetti I, Wood R, Phanuphak P, Shiveley L, Bethell RC, Sawyer J (2006) Efficacy and tolerability of 10-day monotherapy with apricitabine in antiretroviral-naive, HIV-infected patients. AIDS 20:1261–1268

    CAS  PubMed  Google Scholar 

  • Cases-Gonzalez CE, Franco S, Martinez MA, Menendez-Arias L (2007) Mutational patterns associated with the 69 insertion complex in multi-drug-resistant HIV-1 reverse transcriptase that confer increased excision activity and high-level resistance to zidovudine. J Mol Biol 365:298–309

    CAS  PubMed  Google Scholar 

  • Chen CL, Yu G, Venkatachalam TK, Uckun FM (2002) Metabolism of stavudine-5′-[p-bromophenyl methoxyalaninyl phosphate], stampidine, in mice, dogs, and cats. Drug Metab Dispos 30:1523–1531

    CAS  PubMed  Google Scholar 

  • Chu CK, Yadav V, Chong YH, Schinazi RF (2005) Anti-HIV activity of (-)-(2R,4R)-1- (2-hydroxymethyl-1,3-dioxolan-4-yl)-thymine against drug-resistant HIV-1 mutants and studies of its molecular mechanism. J Med Chem 48:3949–3952

    CAS  PubMed  Google Scholar 

  • Creagh T, Ruckle JL, Tolbert DT, Giltner J, Eiznhamer DA, Dutta B, Flavin MT, Xu ZQ (2001) Safety and pharmacokinetics of single doses of (+)-calanolide a, a novel, naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy, human immunodeficiency virus-negative human subjects. Antimicrob Agents Chemother 45:1379–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crumpacker CS (1992) Mechanism of action of foscarnet against viral polymerases. Am J Med 92:3S–7S

    CAS  PubMed  Google Scholar 

  • Currens MJ, Gulakowski RJ, Mariner JM, Moran RA, Buckheit RW Jr, Gustafson KR, McMahon JB, Boyd MR (1996) Antiviral activity and mechanism of action of calanolide A against the human immunodeficiency virus type-1. J Pharmacol Exp Ther 279:645–651

    CAS  PubMed  Google Scholar 

  • Dahlberg JE, Mitsuya H, Blam SB, Broder S, Aaronson SA (1987) Broad spectrum antiretroviral activity of 2′,3′-dideoxynucleosides. Proc Natl Acad Sci USA 84:2469–2473

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daluge SM, Good SS, Faletto MB, Miller WH, St Clair MH, Boone LR, Tisdale M, Parry NR, Reardon JE, Dornsife RE, Averett DR, Krenitsky TA (1997) 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob Agents Chemother 41:1082–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Das K, Lewi PJ, Hughes SH, Arnold E (2005) Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Prog Biophys Mol Biol 88:209–231

    CAS  PubMed  Google Scholar 

  • De Clercq E (1998) The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. Antiviral Res 38:153–179

    PubMed  Google Scholar 

  • De Clercq E (2004) New anti-HIV agents in preclinical or clinical development. Front Med Chem 1:543–579

    Google Scholar 

  • De Clercq E (2007) Acyclic nucleoside phosphonates: past, present and future Bridging chemistry to HIV, HBV, HCV, HPV, adeno-, herpes-, and poxvirus infections: the phosphonate bridge. Biochem Pharmacol 73:911–922

    PubMed  Google Scholar 

  • De Clercq E, Field HJ (2006) Antiviral prodrugs- the development of successful prodrug strategies for antiviral chemotherapy. Br J Pharmacol 147:1–11

    PubMed  Google Scholar 

  • de Muys JM, Gourdeau H, Nguyen-Ba N, Taylor DL, Ahmed PS, Mansour T, Locas C, Richard N, Wainberg MA, Rando RF (1999) Anti-human immunodeficiency virus type 1 activity, intracellular metabolism, and pharmacokinetic evaluation of 2′-deoxy-3′-oxa-4′-thiocytidine. Antimicrob Agents Chemother 43:1835–1844

    PubMed  PubMed Central  Google Scholar 

  • Deval J, Selmi B, Boretto J, Egloff MP, Guerreiro C, Sarfati S, Canard B (2002) The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues. J Biol Chem 277:42097–42104

    CAS  PubMed  Google Scholar 

  • Deval J, Courcambeck J, Selmi B, Boretto J, Canard B (2004) Structural determinants and molecular mechanisms for the resistance of HIV-1 RT to nucleoside analogues. Curr Drug Metab 5:305–316

    CAS  PubMed  Google Scholar 

  • Dueweke TJ, Pushkarskaya T, Poppe SM, Swaney SM, Zhao JQ, Chen IS, Stevenson M, Tarpley WG (1993) A mutation in reverse transcriptase of bis(heteroaryl)piperazine-resistant human immunodeficiency virus type 1 that confers increased sensitivity to other nonnucleoside inhibitors. Proc Natl Acad Sci USA 90:4713–4717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutschman GE, Bridges EG, Liu SH, Gullen E, Guo X, Kukhanova M, Cheng YC (1998) Metabolism of 2′,3′-dideoxy-2′,3′-didehydro-beta-L(-)-5-fluorocytidine and its activity in combination with clinically approved anti-human immunodeficiency virus beta-D(+) nucleoside analogs in vitro. Antimicrob Agents Chemother 42:1799–1804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esnouf RM, Ren J, Hopkins AL, Ross CK, Jones EY, Stammers DK, Stuart DI (1997) Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor. Proc Natl Acad Sci USA 94:3984–3989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng JY, Shi J, Schinazi RF, Anderson KS (1999) Mechanistic studies show that (-)-FTC-TP is a better inhibitor of HIV-1 reverse transcriptase than 3TC-TP. FASEB J 13:1511–1517

    CAS  PubMed  Google Scholar 

  • Feng JY, Murakami E, Zorca SM, Johnson AA, Johnson KA, Schinazi RF, Furman PA, Anderson KS (2004) Relationship between antiviral activity and host toxicity: comparison of the incorporation efficiencies of 2′,3′-dideoxy-5-fluoro-3′-thiacytidine-triphosphate analogs by human immunodeficiency virus type 1 reverse transcriptase and human mitochondrial DNA polymerase. Antimicrob Agents Chemother 48:1300–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo A, Moore KL, Mak J, Sluis-Cremer N, de Bethune MP, Tachedjian G (2006) Potent nonnucleoside reverse transcriptase inhibitors target HIV-1 Gag-Pol. PLoS Pathog 2:e119

    PubMed  PubMed Central  Google Scholar 

  • Flavin MT, Rizzo JD, Khilevich A, Kucherenko A, Sheinkman AK, Vilaychack V, Lin L, Chen W, Greenwood EM, Pengsuparp T, Pezzuto JM, Hughes SH, Flavin TM, Cibulski M, Boulanger WA, Shone RL, Xu ZQ (1996) Synthesis, chromatographic resolution, and anti-human immunodeficiency virus activity of (+/−)-calanolide A and its enantiomers. J Med Chem 39:1303–1313

    CAS  PubMed  Google Scholar 

  • Font E, Rosario O, Santana J, Garcia H, Sommadossi JP, Rodriguez JF (1999) Determination of zidovudine triphosphate intracellular concentrations in peripheral blood mononuclear cells from human immunodeficiency virus-infected individuals by tandem mass spectrometry. Antimicrob Agents Chemother 43:2964–2968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman GA, Lehrman SN, Bolognesi DP, Broder S, Mitsuya H et al (1986) Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA 83:8333–8337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furman PA, Jeffrey J, Kiefer LL, Feng JY, Anderson KS, Borroto-Esoda K, Hill E, Copeland WC, Chu CK, Sommadossi JP, Liberman I, Schinazi RF, Painter GR (2001) Mechanism of action of 1-beta-d-2,6-diaminopurine dioxolane, a prodrug of the human immunodeficiency virus type 1 inhibitor 1-beta-d-dioxolane guanosine. Antimicrob Agents Chemother 45:158–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E, Kalyanaraman VS, Mann D, Sidhu GD, Stahl RE, Zolla-Pazner S, Leibowitch J, Popovic M (1983) Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220:865–867

    CAS  PubMed  Google Scholar 

  • Gao WY, Shirasaka T, Johns DG, Broder S, Mitsuya H (1993) Differential phosphorylation of azidothymidine, dideoxycytidine, and dideoxyinosine in resting and activated peripheral blood mononuclear cells. J Clin Invest 91:2326–2333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giaquinto C, Rampon O, De Rossi A (2006) Antiretroviral therapy for prevention of mother-to-child HIV transmission: focus on single-dose nevirapine. Clin Drug Investig 26:611–627

    CAS  PubMed  Google Scholar 

  • Goebel F, Yakovlev A, Pozniak AL, Vinogradova E, Boogaerts G, Hoetelmans R, de Bethune MP, Peeters M, Woodfall B (2006) Short-term antiviral activity of TMC278-a novel NNRTI-in treatment-naive HIV-1-infected subjects. AIDS 20:1721–1726

    CAS  PubMed  Google Scholar 

  • Goldschmidt V, Marquet R (2004) Primer unblocking by HIV-1 reverse transcriptase and resistance to nucleoside RT inhibitors (NRTIs). Int J Biochem Cell Biol 36:1687–1705

    CAS  PubMed  Google Scholar 

  • Gotte M, Arion D, Parniak MA, Wainberg MA (2000) The M184V mutation in the reverse transcriptase of human immunodeficiency virus type 1 impairs rescue of chain-terminated DNA synthesis. J Virol 74:3579–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Wainberg MA, Nguyen-Ba N, L’Heureux L, de Muys JM, Bowlin TL, Rando RF (1999) Mechanism of action and in vitro activity of 1′,3′-dioxolanylpurine nucleoside analogues against sensitive and drug-resistant human immunodeficiency virus type 1 variants. Antimicrob Agents Chemother 43:2376–2382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Z, Allard B, de Muys JM, Lippens J, Rando RF, Nguyen-Ba N, Ren C, McKenna P, Taylor DL, Bethell RC (2006) In vitro antiretroviral activity and in vitro toxicity profile of SPD754, a new deoxycytidine nucleoside reverse transcriptase inhibitor for treatment of human immunodeficiency virus infection. Antimicrob Agents Chemother 50:625–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond JL, Parikh UM, Koontz DL, Schlueter-Wirtz S, Chu CK, Bazmi HZ, Schinazi RF, Mellors JW (2005) In vitro selection and analysis of human immunodeficiency virus type 1 resistant to derivatives of beta-2′,3′-didehydro-2′,3′-dideoxy-5-fluorocytidine. Antimicrob Agents Chemother 49:3930–3932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herzmann C, Arasteh K, Murphy RL, Schulbin H, Kreckel P, Drauz D, Schinazi RF, Beard A, Cartee L, Otto MJ (2005) Safety, pharmacokinetics, and efficacy of (+/-)-beta-2′,3′-dideoxy-5-fluoro-3′-thiacytidine with efavirenz and stavudine in antiretroviral-naive human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 49:2828–2833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh JC, Zinnen S, Modrich P (1993) Kinetic mechanism of the DNA-dependent DNA polymerase activity of human immunodeficiency virus reverse transcriptase. J Biol Chem 268:24607–24613

    CAS  PubMed  Google Scholar 

  • Hsiou Y, Ding J, Das K, Clark AD Jr, Boyer PL, Lewi P, Janssen PA, Kleim JP, Rosner M, Hughes SH, Arnold E (2001) The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance. J Mol Biol 309:437–445

    CAS  PubMed  Google Scholar 

  • Huang H, Chopra R, Verdine GL, Harrison SC (1998) Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675

    CAS  PubMed  Google Scholar 

  • Jeffrey JL, Feng JY, Qi CC, Anderson KS, Furman PA (2003) Dioxolane guanosine 5′-triphosphate, an alternative substrate inhibitor of wild-type and mutant HIV-1 reverse transcriptase. Steady state and pre-steady state kinetic analyses. J Biol Chem 278:18971–18979

    CAS  PubMed  Google Scholar 

  • Jochmans D, Deval J, Kesteleyn B, Van Marck H, Bettens E, De Baere I, Dehertogh P, Ivens T, Van Ginderen M, Van Schoubroeck B, Ehteshami M, Wigerinck P, Gotte M, Hertogs K (2006) Indolopyridones Inhibit HIV Reverse Transcriptase with a Novel Mechanism of Action. J Virol 80:12283–12292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MA, Fridland A (1989) Phosphorylation of 2′,3′-dideoxyinosine by cytosolic 5′-nucleotidase of human lymphoid cells. Mol Pharmacol 36:291–295

    CAS  PubMed  Google Scholar 

  • Johnson AA, Ray AS, Hanes J, Suo Z, Colacino JM, Anderson KS, Johnson KA (2001) Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J Biol Chem 276:40847–40857

    CAS  PubMed  Google Scholar 

  • Kakuda TN (2000) Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther 22:685–708

    CAS  PubMed  Google Scholar 

  • Kashman Y, Gustafson KR, Fuller RW, Cardellina JH 2nd, McMahon JB, Currens MJ, Buckheit RW Jr, Hughes SH, Cragg GM, Boyd MR (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35:2735–2743

    CAS  PubMed  Google Scholar 

  • Kellam P, Larder BA (1995) Retroviral recombination can lead to linkage of reverse transcriptase mutations that confer increased zidovudine resistance. J Virol 69:669–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CH, Marquez VE, Broder S, Mitsuya H, Driscoll JS (1987) Potential anti-AIDS drugs. 2′,3′-Dideoxycytidine analogues. J Med Chem 30:862–866

    CAS  PubMed  Google Scholar 

  • Kim HO, Ahn SK, Alves AJ, Beach JW, Jeong LS, Choi BG, Van Roey P, Schinazi RF, Chu CK (1992) Asymmetric synthesis of 1,3-dioxolane-pyrimidine nucleosides and their anti-HIV activity. J Med Chem 35:1987–1995

    CAS  PubMed  Google Scholar 

  • Kim HO, Schinazi RF, Nampalli S, Shanmuganathan K, Cannon DL, Alves AJ, Jeong LS, Beach JW, Chu CK (1993) 1,3-dioxolanylpurine nucleosides (2R,4R) and (2R,4S) with selective anti-HIV-1 activity in human lymphocytes. J Med Chem 36:30–37

    CAS  PubMed  Google Scholar 

  • Kodama EI, Kohgo S, Kitano K, Machida H, Gatanaga H, Shigeta S, Matsuoka M, Ohrui H, Mitsuya H (2001) 4′-Ethynyl nucleoside analogs: potent inhibitors of multidrug-resistant human immunodeficiency virus variants in vitro. Antimicrob Agents Chemother 45:1539–1546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kohlstaedt LA, Wang J, Friedman JM, Rice PA, Steitz TA (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256:1783–1790

    CAS  PubMed  Google Scholar 

  • Larder BA (1992) 3′-Azido-3′-deoxythymidine resistance suppressed by a mutation conferring human immunodeficiency virus type 1 resistance to nonnucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 36:2664–2669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larder BA, Stammers DK (1999) Closing in on HIV drug resistance. Nat Struct Biol 6:103–106

    CAS  PubMed  Google Scholar 

  • Larder BA, Darby G, Richman DD (1989) HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243:1731–1734

    CAS  PubMed  Google Scholar 

  • Larder BA, Kemp SD, Harrigan PR (1995) Potential mechanism for sustained antiretroviral efficacy of AZT-3TC combination therapy. Science 269:696–699

    CAS  PubMed  Google Scholar 

  • Lavie A, Schlichting I, Vetter IR, Konrad M, Reinstein J, Goody RS (1997a) The bottleneck in AZT activation. Nat Med 3:922–924

    CAS  PubMed  Google Scholar 

  • Lavie A, Vetter IR, Konrad M, Goody RS, Reinstein J, Schlichting I (1997b) Structure of thymidylate kinase reveals the cause behind the limiting step in AZT activation. Nat Struct Biol 4:601–604

    CAS  PubMed  Google Scholar 

  • Lee H, Hanes J, Johnson KA (2003) Toxicity of nucleoside analogues used to treat AIDS and the selectivity of the mitochondrial DNA polymerase. Biochemistry 42:14711–14719

    CAS  PubMed  Google Scholar 

  • Lennerstrand J, Hertogs K, Stammers DK, Larder BA (2001) Correlation between viral resistance to zidovudine and resistance at the reverse transcriptase level for a panel of human immunodeficiency virus type 1 mutants. J Virol 75:7202–7205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Y, Narayanasamy J, Schinazi RF, Chu CK (2006) Phosphoramidate and phosphate prodrugs of (−)-beta-d-(2R,4R)-dioxolane-thymine: synthesis, anti-HIV activity and stability studies. Bioorg Med Chem 14:2178–2189

    CAS  PubMed  Google Scholar 

  • Lin TS, Chen MS, McLaren C, Gao YS, Ghazzouli I, Prusoff WH (1987) Synthesis and antiviral activity of various 3′-azido, 3′-amino, 2′,3′-unsaturated, and 2′,3′-dideoxy analogues of pyrimidine deoxyribonucleosides against retroviruses. J Med Chem 30:440–444

    CAS  PubMed  Google Scholar 

  • Mansuri MM, Starrett JE Jr, Ghazzouli I, Hitchcock MJ, Sterzycki RZ, Brankovan V, Lin TS, August EM, Prusoff WH, Sommadossi JP et al (1989) 1-(2,3-Dideoxy-beta-d-glycero-pent-2-enofuranosyl)thymine. A highly potent and selective anti-HIV agent. J Med Chem 32:461–466

    CAS  PubMed  Google Scholar 

  • Marchand B, Tchesnokov EP, Gotte M (2007) The pyrophosphate analogue foscarnet traps the pre-translocated state of HIV-1 reverse transcriptase in a brownian ratchet model of polymerase translocation. J Biol Chem 282:3337–3346

    CAS  PubMed  Google Scholar 

  • Mathiesen S, Roge BT, Weis N, Lundgren JD, Obel N, Gerstoft J (2004) Foscarnet used in salvage therapy of HIV-1 patients harbouring multiple nucleotide excision mutations. AIDS 18:1076–1078

    CAS  PubMed  Google Scholar 

  • Menendez-Arias L, Matamoros T, Cases-Gonzalez CE (2006) Insertions and deletions in HIV-1 reverse transcriptase: consequences for drug resistance and viral fitness. Curr Pharm Des 12:1811–1825

    CAS  PubMed  Google Scholar 

  • Merluzzi VJ, Hargrave KD, Labadia M, Grozinger K, Skoog M, Wu JC, Shih CK, Eckner K, Hattox S, Adams J et al (1990) Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 250:1411–1413

    CAS  PubMed  Google Scholar 

  • Meyer PR, Matsuura SE, So AG, Scott WA (1998) Unblocking of chain-terminated primer by HIV-1 reverse transcriptase through a nucleotide-dependent mechanism. Proc Natl Acad Sci USA 95:13471–13476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer PR, Matsuura SE, Mian AM, So AG, Scott WA (1999) A mechanism of AZT resistance: an increase in nucleotide-dependent primer unblocking by mutant HIV-1 reverse transcriptase. Mol Cell 4:35–43

    CAS  PubMed  Google Scholar 

  • Meyer PR, Matsuura SE, Schinazi RF, So AG, Scott WA (2000) Differential removal of thymidine nucleotide analogues from blocked DNA chains by human immunodeficiency virus reverse transcriptase in the presence of physiological concentrations of 2′-deoxynucleoside triphosphates. Antimicrob Agents Chemother 44:3465–3472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer PR, Matsuura SE, Tolun AA, Pfeifer I, So AG, Mellors JW, Scott WA (2002) Effects of specific zidovudine resistance mutations and substrate structure on nucleotide-dependent primer unblocking by human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 46:1540–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milinkovic A, Martinez E (2004) Nevirapine in the treatment of HIV. Expert Rev Anti Infect Ther 2:367–373

    CAS  PubMed  Google Scholar 

  • Miranda LR, Gotte M, Liang F, Kuritzkes DR (2005) The L74V mutation in human immunodeficiency virus type 1 reverse transcriptase counteracts enhanced excision of zidovudine monophosphate associated with thymidine analog resistance mutations. Antimicrob Agents Chemother 49:2648–2656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuya H, Weinhold KJ, Furman PA, St Clair MH, Lehrman SN, Gallo RC, Bolognesi D, Barry DW, Broder S (1985) 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci USA 82:7096–7100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moutouh L, Corbeil J, Richman DD (1996) Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc Natl Acad Sci USA 93:6106–6111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moyle G (2001) The emerging roles of non-nucleoside reverse transcriptase inhibitors in antiretroviral therapy. Drugs 61:19–26

    CAS  PubMed  Google Scholar 

  • Moyle G (2005) Mechanisms of HIV and nucleoside reverse transcriptase inhibitor injury to mitochondria. Antivir Ther 10(Suppl 2):M47–M52

    CAS  PubMed  Google Scholar 

  • Ohrui H (2006) 2′-deoxy′4′-C-ethynyl-2-fluoroadenosine, a nucleoside reverse transcriptase inhibitor, is highly potent against all human immunodeficiency viruses type 1 and has low toxicity. Chem Rec 6:133–143

    CAS  PubMed  Google Scholar 

  • Ohrui H, Kohgo S, Kitano K, Sakata S, Kodama E, Yoshimura K, Matsuoka M, Shigeta S, Mitsuya H (2000) Syntheses of 4′-C-ethynyl-beta-d-arabino- and 4′-C-ethynyl-2′-deoxy-beta-d-ribo-pentofuranosylpyrimidines and -purines and evaluation of their anti-HIV activity. J Med Chem 43:4516–4525

    CAS  PubMed  Google Scholar 

  • Ohrui H, Kohgo S, Hayakawa H, Kodama E, Matsuoka M, Nakata T, Mitsuya H (2006) 2′-Deoxy-4′-C-ethynyl-2-fluoroadenosine: a nucleoside reverse transcriptase inhibitor with highly potent activity against all HIV-1 strains, favorable toxic profiles and stability in plasma. Nucleic Acids Symp Ser (Oxf) 50:1–2

    Google Scholar 

  • Otto MJ (2004) New nucleoside reverse transcriptase inhibitors for the treatment of HIV infections. Curr Opin Pharmacol 4:431–436

    CAS  PubMed  Google Scholar 

  • Parikh UM, Bacheler L, Koontz D, Mellors JW (2006) The K65R mutation in human immunodeficiency virus type 1 reverse transcriptase exhibits bidirectional phenotypic antagonism with thymidine analog mutations. J Virol 80:4971–4977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pata JD, Stirtan WG, Goldstein SW, Steitz TA (2004) Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors. Proc Natl Acad Sci USA 101:10548–10553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelemans H, Esnouf R, Dunkler A, Parniak MA, Vandamme AM, Karlsson A, De Clercq E, Kleim JP, Balzarini J (1997) Characteristics of the Pro225His mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase that appears under selective pressure of dose-escalating quinoxaline treatment of HIV-1. J Virol 71:8195–8203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271:1582–1586

    CAS  PubMed  Google Scholar 

  • Prado JG, Franco S, Matamoros T, Ruiz L, Clotet B, Menendez-Arias L, Martinez MA, Martinez-Picado J (2004) Relative replication fitness of multi-nucleoside analogue-resistant HIV-1 strains bearing a dipeptide insertion in the fingers subdomain of the reverse transcriptase and mutations at codons 67 and 215. Virology 326:103–112

    CAS  PubMed  Google Scholar 

  • Preston BD, Poiesz BJ, Loeb LA (1988) Fidelity of HIV-1 reverse transcriptase. Science 242:1168–1171

    CAS  PubMed  Google Scholar 

  • Ray AS, Yang Z, Shi J, Hobbs A, Schinazi RF, Chu CK, Anderson KS (2002) Insights into the molecular mechanism of inhibition and drug resistance for HIV-1 RT with carbovir triphosphate. Biochemistry 41:5150–5162

    CAS  PubMed  Google Scholar 

  • Reardon JE (1992) Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation. Biochemistry 31:4473–4479

    CAS  PubMed  Google Scholar 

  • Reardon JE (1993) Human immunodeficiency virus reverse transcriptase. A kinetic analysis of RNA-dependent and DNA-dependent DNA polymerization. J Biol Chem 268:8743–8751

    CAS  PubMed  Google Scholar 

  • Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D et al (1995) High resolution structures of HIV-1 RT from four RT-inhibitor complexes. Nat Struct Biol 2:293–302

    CAS  PubMed  Google Scholar 

  • Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK (2000) Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Structure 8:1089–1094

    CAS  PubMed  Google Scholar 

  • Reno JM, Lee LF, Boezi JA (1978) Inhibition of herpesvirus replication and herpesvirus-induced deoxyribonucleic acid polymerase by phosphonoformate. Antimicrob Agents Chemother 13:188–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richard N, Salomon H, Oliveira M, Rando R, Mansour T, Gu Z, Wainberg MA (2000) Selection of resistance-conferring mutations in HIV-1 by the nucleoside reverse transcriptase inhibitors (+/−)dOTC and (+/−)dOTFC. Antivir Chem Chemother 11:359–365

    CAS  PubMed  Google Scholar 

  • Richman D, Rosenthal AS, Skoog M, Eckner RJ, Chou TC, Sabo JP, Merluzzi VJ (1991) BI-RG-587 is active against zidovudine-resistant human immunodeficiency virus type 1 and synergistic with zidovudine. Antimicrob Agents Chemother 35:305–308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richman DD, Havlir D, Corbeil J, Looney D, Ignacio C, Spector SA, Sullivan J, Cheeseman S, Barringer K, Pauletti D et al (1994) Nevirapine resistance mutations of human immunodeficiency virus type 1 selected during therapy. J Virol 68:1660–1666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rigourd M, Lanchy JM, Le Grice SF, Ehresmann B, Ehresmann C, Marquet R (2000) Inhibition of the initiation of HIV-1 reverse transcription by 3′-azido-3′-deoxythymidine. Comparison with elongation. J Biol Chem 275:26944–26951

    CAS  PubMed  Google Scholar 

  • Roberts JD, Bebenek K, Kunkel TA (1988) The accuracy of reverse transcriptase from HIV-1. Science 242:1171–1173

    CAS  PubMed  Google Scholar 

  • Rodgers DW, Gamblin SJ, Harris BA, Ray S, Culp JS, Hellmig B, Woolf DJ, Debouck C, Harrison SC (1995) The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. Proc Natl Acad Sci USA 92:1222–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandstrom EG, Kaplan JC, Byington RE, Hirsch MS (1985) Inhibition of human T-cell lymphotropic virus type III in vitro by phosphonoformate. Lancet 1:1480–1482

    CAS  PubMed  Google Scholar 

  • Sarafianos SG, Das K, Ding J, Boyer PL, Hughes SH, Arnold E (1999) Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site. Chem Biol 6:R137–R146

    CAS  PubMed  Google Scholar 

  • Schinazi RF, McMillan A, Cannon D, Mathis R, Lloyd RM, Peck A, Sommadossi JP, St Clair M, Wilson J, Furman PA et al (1992) Selective inhibition of human immunodeficiency viruses by racemates and enantiomers of cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine. Antimicrob Agents Chemother 36:2423–2431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider B, Xu YW, Sellam O, Sarfati R, Janin J, Veron M, Deville-Bonne D (1998) Pre-steady state of reaction of nucleoside diphosphate kinase with anti-HIV nucleotides. J Biol Chem 273:11491–11497

    CAS  PubMed  Google Scholar 

  • Schneider MF, Gange SJ, Williams CM, Anastos K, Greenblatt RM, Kingsley L, Detels R, Munoz A (2005) Patterns of the hazard of death after AIDS through the evolution of antiretroviral therapy: 1984–2004. AIDS 19:2009–2018

    PubMed  Google Scholar 

  • Sekino E, Kumamoto T, Tanaka T, Ikeda T, Ishikawa T (2004) Concise synthesis of anti-HIV-1 active (+)-inophyllum B and (+)-calanolide A by application of (-)-quinine-catalyzed intramolecular oxo-Michael addition. J Org Chem 69:2760–2767

    CAS  PubMed  Google Scholar 

  • Smith AJ, Meyer PR, Asthana D, Ashman MR, Scott WA (2005) Intracellular substrates for the primer-unblocking reaction by human immunodeficiency virus type 1 reverse transcriptase: detection and quantitation in extracts from quiescent- and activated-lymphocyte subpopulations. Antimicrob Agents Chemother 49:1761–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sobieszczyk ME, Talley AK, Wilkin T, Hammer SM (2005) Advances in antiretroviral therapy. Top HIV Med 13:24–44

    PubMed  Google Scholar 

  • Soudeyns H, Yao XI, Gao Q, Belleau B, Kraus JL, Nguyen-Ba N, Spira B, Wainberg MA (1991) Anti-human immunodeficiency virus type 1 activity and in vitro toxicity of 2′-deoxy-3′-thiacytidine (BCH-189), a novel heterocyclic nucleoside analog. Antimicrob Agents Chemother 35:1386–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spence RA, Kati WM, Anderson KS, Johnson KA (1995) Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors. Science 267:988–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spence RA, Anderson KS, Johnson KA (1996) HIV-1 reverse transcriptase resistance to nonnucleoside inhibitors. Biochemistry 35:1054–1063

    CAS  PubMed  Google Scholar 

  • St Clair MH, Martin JL, Tudor-Williams G, Bach MC, Vavro CL, King DM, Kellam P, Kemp SD, Larder BA (1991) Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science 253:1557–1559

    CAS  PubMed  Google Scholar 

  • Sundar K, Suarez M, Banogon PE, Shapiro JM (1997) Zidovudine-induced fatal lactic acidosis and hepatic failure in patients with acquired immunodeficiency syndrome: report of two patients and review of the literature. Crit Care Med 25:1425–1430

    CAS  PubMed  Google Scholar 

  • Sunthitikawinsakul A, Kongkathip N, Kongkathip B, Phonnakhu S, Daly JW, Spande TF, Nimit Y, Napaswat C, Kasisit J, Yoosook C (2003) Anti-HIV-1 limonoid: first isolation from Clausena excavata. Phytother Res 17:1101–1103

    CAS  PubMed  Google Scholar 

  • Uckun FM, Pendergrass S, Venkatachalam TK, Qazi S, Richman D (2002) Stampidine is a potent inhibitor of zidovudine- and nucleoside analog reverse transcriptase inhibitor-resistant primary clinical human immunodeficiency virus type 1 isolates with thymidine analog mutations. Antimicrob Agents Chemother 46:3613–3616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Draanen NA, Tisdale M, Parry NR, Jansen R, Dornsife RE, Tuttle JV, Averett DR, Koszalka GW (1994) Influence of stereochemistry on antiviral activities and resistance profiles of dideoxycytidine nucleosides. Antimicrob Agents Chemother 38:868–871

    PubMed  PubMed Central  Google Scholar 

  • Van Gelder J, Deferme S, Annaert P, Naesens L, De Clercq E, Van den Mooter G, Kinget R, Augustijns P (2000) Increased absorption of the antiviral ester prodrug tenofovir disoproxil in rat ileum by inhibiting its intestinal metabolism. Drug Metab Dispos 28:1394–1396

    PubMed  Google Scholar 

  • Venkatachalam TK, Tai HL, Vig R, Chen CL, Jan ST, Uckun FM (1998) Enhancing effects of a mono-bromo substitution at the para position of the phenyl moiety on the metabolism and anti-HIV activity of d4T-phenyl methoxyalaninyl phosphate derivatives. Bioorg Med Chem Lett 8:3121–3126

    CAS  PubMed  Google Scholar 

  • Vidal F, Domingo JC, Guallar J, Saumoy M, Cordobilla B, Sanchez de la Rosa R, Giralt M, Alvarez ML, Lopez-Dupla M, Torres F, Villarroya F, Cihlar T, Domingo P (2006) In vitro cytotoxicity and mitochondrial toxicity of tenofovir alone and in combination with other antiretrovirals in human renal proximal tubule cells. Antimicrob Agents Chemother 50:3824–3832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vingerhoets J, Azijn H, Fransen E, De Baere I, Smeulders L, Jochmans D, Andries K, Pauwels R, de Bethune MP (2005) TMC125 displays a high genetic barrier to the development of resistance: evidence from in vitro selection experiments. J Virol 79:12773–12782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vivet-Boudou V, Didierjean J, Isel C, Marquet R (2006) Nucleoside and nucleotide inhibitors of HIV-1 replication. Cell Mol Life Sci 63:163–186

    CAS  PubMed  Google Scholar 

  • Vrang L, Oberg B (1986) PPi analogs as inhibitors of human T-lymphotropic virus type III reverse transcriptase. Antimicrob Agents Chemother 29:867–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller IV, Williams IG (2001) ABC of AIDS. Antiretroviral drugs. BMJ 322:1410–1412

    CAS  PubMed  PubMed Central  Google Scholar 

  • White KL, Chen JM, Margot NA, Wrin T, Petropoulos CJ, Naeger LK, Swaminathan S, Miller MD (2004) Molecular mechanisms of tenofovir resistance conferred by human immunodeficiency virus type 1 reverse transcriptase containing a diserine insertion after residue 69 and multiple thymidine analog-associated mutations. Antimicrob Agents Chemother 48:992–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • White KL, Chen JM, Feng JY, Margot NA, Ly JK, Ray AS, Macarthur HL, McDermott MJ, Swaminathan S, Miller MD (2006) The K65R reverse transcriptase mutation in HIV-1 reverses the excision phenotype of zidovudine resistance mutations. Antivir Ther 11:155–163

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Catherine Isel for careful reading of this manuscript. This work was supported by the French “Agence Nationale de Recherches sur le SIDA (ANRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Marquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Safadi, Y., Vivet-Boudou, V. & Marquet, R. HIV-1 reverse transcriptase inhibitors. Appl Microbiol Biotechnol 75, 723–737 (2007). https://doi.org/10.1007/s00253-007-0919-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0919-7

Keywords

Navigation