Skip to main content
Log in

Microencapsulated bacterial cells can be used to produce the enzyme feruloyl esterase: preparation and in-vitro analysis

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Biotechnological production of ferulic acid, a precursor of vanillin, is an attractive alternative for various industries due to the high price and demand for natural ferulic acid. Feruloyl esterase has been identified as a key enzyme involved in microbial transformations of ferulic acid to vanillin. Several fungal feruloyl esterases have been purified and characterized for their use in the production of ferulic acid. This paper, for the first time, discusses the use of lactic acid bacteria for the production of ferulic acid. Specifically, we have used Lactobacillus cells and microencapsulation so that ferulic acid can be produced continuously using various types of fermentation systems. Bacteria were encapsulated in alginate-poly-l-lysine-alginate (APA) microcapsules, and the production of ferulic acid by lactobacilli was detected using a real-time high-performance liquid chromatography (HPLC)-based assay. Results show that ferulic acid can be produced using microencapsulated Lactobacillus fermentum (ATCC 11976) with significant levels of biological feruloyl esterase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Babu PS, Panda T, Babu MKM (1991) Studies on improvement techniques for immobilizing and stabilizing penicillin amidase associated with E. coli cells. Enzyme Microb Technol 13:676–682

    Article  CAS  Google Scholar 

  • Barbe C, Dubourdieu D (1998) Characterisation and purification of a cinnamate esterase from Aspergillus niger industrial pectinase preparation. J Sci Food Agric 78(4):471–478

    Article  CAS  Google Scholar 

  • Bartolome B, Faulds CB, Tuohy M, Hazlewood GP, Gilbert HJ, Williamson G (1995) Influence of different xylanases on the activity of ferulic acid esterase on wheat bran. Biotechnol Appl Biochem 22:65–73

    CAS  Google Scholar 

  • Bartolome B, Faulds CB, Williamson, G (1997) Enzymic release of ferulic acid from barley spent grain. J Cereal Sci 25(3):285–288

    Article  CAS  Google Scholar 

  • Bonnin E, Lesage-Meessen L, Asther, M, Thibault JF (3-1-1999) Enhanced bioconversion of vanillic acid into vanillin by the use of ‘natural’ cellobiose. J Sci Food Agric 79(3):484–486

    Article  CAS  Google Scholar 

  • Chen H, Ouyang W, Jones M, Haque T, Lawuyi B, Prakash S (2005) In-vitro analysis of APA microcapsules for oral delivery of live bacterial cells. J Microencapsul 22(5):539–547

    Article  CAS  Google Scholar 

  • deVries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RHH, Faulds CB, Williamson G, van den Hombergh JPTW, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63(12):4638–4644

    Article  CAS  Google Scholar 

  • De Vries RP, Visser J (1999) Regulation of the feruloyl esterase (faeA) gene from Aspergillus niger. Appl Environ Microbiol 65(12):5500–5503

    Article  Google Scholar 

  • Donaghy J, Kelly PF, Mckay AM (1998) Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl Microbiol Biotechnol 50(2):257–260

    Article  CAS  Google Scholar 

  • Faulds CB, Kroon, PA, Saulnier L, Thibault JF, Williamson G (1995) Release of ferulic acid from maize bran and derived oligosaccharides by Aspergillus niger esterases. Carbohydr Polym 27(3):187–190

    Article  CAS  Google Scholar 

  • Faulds CB, Bartolome B, Williamson G (1997) Novel ziotransformation of agro-industrial cereal waste by ferulic acid esterases. Ind Crops Prod 6:367–374

    Article  CAS  Google Scholar 

  • Furukawa H, Zenno S, Iwasawa Y, Morita H, Yoshida T, Nagasawa T (2003) Ferulic acid production from clove oil by Pseudomonas fluorescens E118. J Biosci Bioeng 96(4):404–405

    Article  CAS  Google Scholar 

  • Headley S, Massad S (1999) Nutritional supplements for athletes. National Association for Sports and Physical Association Publications, Reston, VA

    Google Scholar 

  • Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells—engineering principles. Chem Eng Sci 40(8):1321–1354

    Article  CAS  Google Scholar 

  • Kim YD, Morr CV, Schenz TW (1996) Microencapsulation properties of gum Arabic and several food proteins: liquid orange oil emulsion particles. J Agric Food Chem 44(5):1308–1313

    Article  CAS  Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49(1):1–8

    Article  CAS  Google Scholar 

  • Kroon PA, Garcia-Conesa MT, Fillingham IJ, Hazlewood GP, Williamson G (1999) Release of ferulic acid dehydrodimers from plant cell walls by feruloyl esterases. J Sci Food Agric 79(3):428–434

    Article  CAS  Google Scholar 

  • Lesage-Meessen L, Stentelaire C, Lomascolo A, Couteau D, Asther M, Moukha S, Record E, Sigoillot JC, Asther M (3-1-1999) Fungal transformation of ferulic acid from sugar beet pulp to natural vanillin. J Sci Food Agric 79(3):487–490

    Article  CAS  Google Scholar 

  • Mastihuba V, Kremnicky L, Mastihubova M, Willett JL, Cote GL (2002) A spectrophotometric assay for feruloyl esterases. Anal Biochem 309(1):96–101

    Article  CAS  Google Scholar 

  • Murakami A, Nakamura Y, Koshimizu K, Takahashi D, Matsumoto K, Hagihara K, Taniguchi H, Nomura E, Hosoda A, Tsuno T, Maruta Y, Kim, HW, Kawabata K, Ohigashi H (2002) FA15, a hydrophobic derivative of ferulic acid, suppresses inflammatory responses and skin tumor promotion: comparison with ferulic acid. Cancer Lett 180(2):121–129

    Article  CAS  Google Scholar 

  • Ou SY, Kwok KC (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84(11):1261–1269

    Article  CAS  Google Scholar 

  • Overhage J, Steinbuchel A, Priefert H (2002) Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16. Appl Environ Microbiol 68(9):4315–4321

    Article  CAS  Google Scholar 

  • Overhage J, Steinbuchel A, Priefert H (2003) Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Appl Environ Microbiol 69(11):6569–6576

    Article  CAS  Google Scholar 

  • Plaggenborg R, Overhage J, Loos A, Archer JA, Lessard P, Sinskey AJ, Steinbuchel A, Priefert H (2006) Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72(4):745–755

    Article  CAS  Google Scholar 

  • Priefert H, Rabenhorst J, Steinbuchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56(3–4):296–314

    Article  CAS  Google Scholar 

  • Sheu TY, Marshall RT (1993) Microentrapment of lactobacilli in calcium alginate gels. J Food Sci 58(3):557–561

    Article  Google Scholar 

  • Sigoillot C, Camarero S, Vidal T, Record E, Asther M, Perez-Boada M, Martinez MJ, Sigoillot JC, Asther M, Colom JF, Martinez AT (2005) Comparison of different fungal enzymes for bleaching high-quality paper pulps. J Biotechnol 115(4):333–343

    Article  CAS  Google Scholar 

  • Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630

    Article  CAS  Google Scholar 

  • Walton NJ, Narbad A, Faulds C, Williamson G (2000) Novel approaches to the biosynthesis of vanillin. Curr Opin Biotechnol 11(5):490–496

    Article  CAS  Google Scholar 

  • Witter L (1996) Immobilized microbial cells. In: Baianu IC, Pessen H, Kumosinski TF (eds) Physical chemistry of food processes, vol. 2. Van Nostrand Reinhold, New York, pp 475–486

    Google Scholar 

  • Wong DW (2006) Feruloyl esterase: a key enzyme in biomass degradation. Appl Biochem Biotechnol 133(2):87–112

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by research grants from the Canadian Institutes of Health Research (CIHR). Jasmine Bhathena gratefully acknowledges support from the Canadian Liver Foundation for a Graduate Studentship. Christopher Martoni acknowledges a Canada Graduate Scholarship (CGS) from the Natural Sciences and Engineering Research Council (NSERC), Canada. Aleksandra Malgorzata Urbanska acknowledges the McGill Faculty of Medicine Internal Scholarship and a McGill Graduate Student Fellowship (MGSF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhathena, J., Kulamarva, A., Urbanska, A.M. et al. Microencapsulated bacterial cells can be used to produce the enzyme feruloyl esterase: preparation and in-vitro analysis. Appl Microbiol Biotechnol 75, 1023–1029 (2007). https://doi.org/10.1007/s00253-007-0908-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0908-x

Keywords

Navigation