Skip to main content

Advertisement

Log in

Archaea in protozoa and metazoa

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The presence of Archaea is currently being explored in various environments, including extreme geographic positions and eukaryotic habitats. Methanogens are the dominating archaeal organisms found in most animals, from unicellular protozoa to humans. Many methanogens can contribute to the removal of hydrogen, thereby improving the efficiency of fermentation or the reductive capacity of energy-yielding reactions. They may also be involved in tissue damage in periodontal patients. Recent molecular studies demonstrated the presence of Archaea other than methanogens in some animals—but so far, not in humans. The roles of these microorganisms have not yet been established. In the present review, we present the state of the art regarding the archaeal microflora in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anklin-Mühlemann R, Bignell DE, Veivers PC, Leuthold RH, Slaytor M (1995) Morphological, microbiological and biochemical-studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J Insect Physiol 41:929–940

    Google Scholar 

  • Ansorg R, Rath PM, Runde V, Beelen DW (2003) Influence of intestinal decontamination using metronidazole on the detection of methanogenic Archaea in bone marrow transplant recipients. Bone Marrow Transplant 31:117–119

    Article  CAS  PubMed  Google Scholar 

  • Barns SM, Fundyga RE, Jeffries MW, Pace NR (1994) Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc Natl Acad Sci USA 91:1609–1613

    CAS  PubMed  Google Scholar 

  • Belay N, Mukhopadhyay B, Conway de Macario EC, Galask R, Daniels L (1990) Methanogenic bacteria in human vaginal samples. J Clin Microbiol 28:1666–1668

    CAS  PubMed  Google Scholar 

  • Blaxter KL, Clapperton JL (1965) Prediction of amount of methane produced by ruminants. Br J Nutr 19:511–522

    CAS  PubMed  Google Scholar 

  • Brauman A, Kane MD, Labat M, Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387

    CAS  Google Scholar 

  • Brauman A, Doré J, Eggleton P, Bignell D, Breznak JA, Kane MD (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. FEMS Microbiol Ecol 35:27–36

    Google Scholar 

  • Brusa T, Canzi E, Allievi L, Delpuppo E, Ferrari A (1993) Methanogens in the human intestinal-tract and oral cavity. Curr Microbiol 27:261–265

    Google Scholar 

  • Buckley DH, Graber JR, Schmidt TM (1998) Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl Environ Microbiol 64:4333–4339

    CAS  PubMed  Google Scholar 

  • Christl SU, Gibson GR, Cummings JH (1992) Role of dietary sulfate in the regulation of methanogenesis in the human large-intestine. Gut 33:1234–1238

    CAS  PubMed  Google Scholar 

  • Conway De Macario E, Macario AJL, Miller TL, Wolin MJ (1987) Antigenic diversity of methanogenic bacteria from intestinal tracts of animals. Syst Appl Microbiol 9:210–213

    Google Scholar 

  • Cruden DL, Markovetz AJ (1984) Microbial aspects of the cockroach hindgut. Arch Microbiol 138:131–139

    Article  CAS  PubMed  Google Scholar 

  • Dermoumi HL, Ansorg RAM (2001) Isolation and antimicrobial susceptibility testing of fecal strains of the archaeon Methanobrevibacter smithii. Chemotherapy 47:177–183

    Article  CAS  PubMed  Google Scholar 

  • Doré J, Pochart P, Bernalier A, Goderel I, Morvan B, Rambaud JC (1995) Enumeration of H2 utilizing methanogenic archaea, acetogenic and sulfate-reducing bacteria from human feces. FEMS Microbiol Ecol 17:279–284

    Google Scholar 

  • Eckburg PB, Lepp PW, Relman DA (2003) Archaea and their potential role in human disease. Infect Immun 71:591–596

    Article  CAS  PubMed  Google Scholar 

  • El Oufir L, Flourie B, Bruley V des, Barry JL, Cloarec D, Bornet F, Galmiche JP (1996) Relations between transit time, fermentation products, and hydrogen consuming flora in healthy humans. Gut 38:870–877

    CAS  PubMed  Google Scholar 

  • Embley TM, Finlay BJ (1994) The use of small-subunit ribosomal-RNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140:225–235

    CAS  PubMed  Google Scholar 

  • Faguy DM (2003) Lateral gene transfer (LGT) between Archaea and Escherichia coli is a contributor to the emergence of novel infectious disease. Infect Dis 3:13–16

    Article  Google Scholar 

  • Fenchel T, Finlay BJ (1992) Production of methane and hydrogen by anaerobic ciliates containing symbiotic methanogens. Arch Microbiol 157:475–480

    CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University, Oxford

    Google Scholar 

  • Florin TH, Zhu G, Kirk KM, Martin NG (2000) Shared and unique environmental factors determine the ecology of methanogens in humans and rats. Am J Gastroenterol 95:2872–2879

    CAS  PubMed  Google Scholar 

  • Florin THJ, Jabbar IA (1994) A possible role for bile-acid in the control of methanogenesis and the accumulation of hydrogen gas in the human colon. J Gastroenterol Hepatol 9:112–117

    CAS  PubMed  Google Scholar 

  • Forterre P, Brochier C, Philippe H (2002) Evolution of the Archaea. Theor Popul Biol 61:409–422

    Article  PubMed  Google Scholar 

  • Friedrich MW, Schmitt-Wagner D, Lueders T, Brune A (2001) Axial differences in community structure of Crenarchaeota and Euryarchaeota in the highly compartmentalized gut of the soil-feeding termite Cubitermes orthognathus. Appl Environ Microbiol 67:4880–4890

    Article  CAS  PubMed  Google Scholar 

  • Fröhlich J, König H (1999) Ethidium bromide: a fast fluorescent staining procedure for the detection of symbiotic partnership of flagellates and prokaryotes. J Microbiol Methods 35:121–127

    Article  PubMed  Google Scholar 

  • Gijzen HJ, Barugahare M (1992) Contribution of anaerobic protozoa and methanogens to hindgut metabolic-activities of the american cockroach, Periplaneta americana. Appl Environ Microbiol 58:2565–2570

    CAS  PubMed  Google Scholar 

  • Greisen K, Loeffelholz M, Purohit A, Leong D (1994) PCR primers and probes for the 16S rRNA gene of most species of pathogenic bacteria, including bacteria found in cerebrospinal fluid. J Clin Microbiol 32:335–351

    CAS  PubMed  Google Scholar 

  • Hackstein JH, Stumm CK (1994) Methane production in terrestrial arthropods. Proc Natl Acad Sci USA 91:5441–5445

    CAS  PubMed  Google Scholar 

  • Hackstein JH (1997) Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations. Antonie Van Leeuwenhoek 72:63–76

    Article  CAS  PubMed  Google Scholar 

  • Hackstein JHP, Alen TA van, Camp HO den, Smits A, Mariman E (1995) Intestinal methanogenesis in primates—a genetic and evolutionary approach. Dtsch Tieraerzl Wochenschr 102:152–154

    CAS  Google Scholar 

  • Hackstein JHP, Alen TA van (1996) Fecal methanogens and vertebrate evolution. Evolution 50:559–572

    Google Scholar 

  • Hackstein JHP, Vogels GD (1997) Endosymbiotic interactions in anaerobic protozoa. Antonie Van Leeuwenhoek 71:151–158

    Article  CAS  PubMed  Google Scholar 

  • Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67

    Article  CAS  PubMed  Google Scholar 

  • Jarvis GN, Strompl C, Burgess DM, Skillman LC, Moore ER, Joblin KN (2000) Isolation and identification of ruminal methanogens from grazing cattle. Curr Microbiol 40:327–332

    Article  CAS  PubMed  Google Scholar 

  • Javor B, Requadt C, Stoekenius W (1982) Box-shaped halophilic bacteria. J Bacteriol 151:1532–1542

    CAS  PubMed  Google Scholar 

  • Joblin KN, Matsui H, Naylor GE, Ushida K (2002) Degradation of fresh ryegrass by methanogenic co-cultures of ruminal fungi grown in the presence or absence of Fibrobacter succinogenes. Curr Microbiol 45:46–53

    Article  CAS  PubMed  Google Scholar 

  • Johnson KA, Johnson DE (1995) Methane emissions from cattle. J Anim Sci 73:2483–2492

    CAS  PubMed  Google Scholar 

  • Jones WJ, Nagle DP, Whitman WB (1987) Methanogens and the diversity of Archaebacteria. Microbiol Rev 51:135–177

    CAS  PubMed  Google Scholar 

  • Jurgens G, Glockner F, Amann R, Saano A, Montonen L, Likolammi M, Munster U (2000) Identification of novel Archaea in bacterioplankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization. FEMS Microbiol Ecol 34:45–56

    Article  CAS  PubMed  Google Scholar 

  • Kajs TM, Fitzgerald JA, Buckner RY, Coyle GA, Stinson BS, Morel JG, Levitt MD (1997) Influence of a methanogenic flora on the breath H2 and symptom response to ingestion of sorbitol or oat fiber. Am J Gastroenterol 92:89–94

    CAS  PubMed  Google Scholar 

  • Keay S, Zhang CO, Baldwin BR, Alexander RB (1999) Polymerase chain reaction amplification of bacterial 16S rRNA genes in prostate biopsies from men without chronic prostatitis. Urology 53:487–491

    Article  CAS  PubMed  Google Scholar 

  • König H, Hartmann E, Karcher U (1994) Pathways and principles of the biosynthesis of methanobacterial cell-wall polymers. Syst Appl Microbiol 16:510–517

    Google Scholar 

  • Konings WN, Albers SV, Koning S, Driessen AJ (2002) The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81:61–72

    Article  CAS  PubMed  Google Scholar 

  • Krishnan L, Sad S, Patel GB, Sprott GD (2001) The potent adjuvant activity of archaeosomes correlates to the recruitment and activation of macrophages and dendritic cells in vivo. J Immunol 166:1885–1893

    CAS  PubMed  Google Scholar 

  • Kroes I, Lepp PW, Relman DA (1999) Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci USA 96:14547–14552

    Article  CAS  PubMed  Google Scholar 

  • Kulik EM, Sandmeier H, Hinni K, Meyer J (2001) Identification of archaeal rDNA from subgingival dental plaque by PCR amplification and sequence analysis. FEMS Microbiol Lett 196:129–133

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter JR, Breznak JA (1996) Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631

    Google Scholar 

  • Leadbetter JR, Crosby LD, Breznak JA (1998) Methanobrevibacter filiformis sp. nov., A filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292

    Article  CAS  PubMed  Google Scholar 

  • Leclerc M, Bernalier A, Donadille G, Lelait M (1997) H2/CO2 metabolism in acetogenic bacteria isolated from the human colon. Anaerobe 3:307–315

    Article  CAS  Google Scholar 

  • Lemke T, Alen T van, Hackstein JH, Brune A (2001) Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches. Appl Environ Microbiol 67:4657–4661

    Article  CAS  PubMed  Google Scholar 

  • Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic Archaea and human periodontal disease. Proc Natl Acad Sci USA 101:6176–6181

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Raskin L, Stahl DA (1997) Microbial community structure of gastrointesinal tracts of domestic animals: comparative analyses using rRNA targetted oligonucleotide probes. FEMS Microbiol Ecol 22:281–294

    Google Scholar 

  • Lin C, Miller TL (1998) Phylogenetic analysis of Methanobrevibacter isolated from feces of humans and other animals. Arch Microbiol 169:397–403

    Article  CAS  PubMed  Google Scholar 

  • Lu JJ, Perng CL, Lee SY, Wan CC (2000) Use of PCR with universal primers and restriction endonuclease digestions for detection and identification of common bacterial pathogens in cerebrospinal fluid. J Clin Microbiol 38:2076–2080

    CAS  PubMed  Google Scholar 

  • Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S–1045S

    CAS  PubMed  Google Scholar 

  • Maczulak AE, Wolin MJ, Miller TL (1989) Increase in colonic methanogens and total anaerobes in aging rats. Appl Environ Microbiol 55:2468–2473

    CAS  PubMed  Google Scholar 

  • Maczulak AE, Wolin MJ, Miller TL (1993) Amounts of viable anaerobes, methanogens, and bacterial fermentation products in feces of rats fed high-fiber or fiber-free diets. Appl Environ Microbiol 59:657–662

    CAS  PubMed  Google Scholar 

  • Margot H, Acebal C, Toril E, Amils R, Puentes JLF (2002) Consistent association of crenarchaeal Archaea with sponges of the genus Axinella. Mar Biol 140:739–745

    Article  CAS  Google Scholar 

  • Mariani BD, Martin DS, Levine MJ, Booth REJ, Tuan RS (1996) Polymerase chain reaction detection of bacterial infection in total knee arthroplasty. Clin Orthop 11–22

  • Marteau P, Pochart P, Dore J, Bera-Maillet C, Bernalier A, Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67:4939–4942

    Article  CAS  PubMed  Google Scholar 

  • McInerney JO, Wilkinson M, Patching JW, Embley TM, Powell R (1995) Recovery and phylogenetic analysis of novel archaeal rRNA sequences from a deep-sea deposit feeder. Appl Environ Microbiol 61:1646–1648

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1982) Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol 131:14–18

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ, Conway de Macario EC, Macario AJL (1982) Isolation of Methanobrevibacter smithii from human feces. Appl Environ Microbiol 43:227–232

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1983) Stability of Methanobrevibacter smithii populations in the microbial-flora excreted from the human large bowel. Appl Environ Microbiol 45:317–318

    CAS  PubMed  Google Scholar 

  • Miller TL, Wolin MJ (1985) Methanosphaera stadtmaniae gen.nov., sp.nov.—a species that forms methane by reducing methanol with hydrogen. Arch Microbiol 141:116–122

    CAS  PubMed  Google Scholar 

  • Morvan B, Bonnemoy F, Fonty G, Gouet P (1996) Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr Microbiol 32:129–133

    Article  CAS  PubMed  Google Scholar 

  • O’Connor EM, Shand RF (2002) Halocins and sulfolobicins: the emerging story of Archaeal protein and peptide antibiotics. J Ind Microbiol Biotechnol 28:23–31

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Noda S, Horikoshi K, Kudo T (1995) Phylogeny of symbiotic methanogens in the gut of the termite Reticulitermes speratus. FEMS Microbiol Lett 134:45–50

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma M, Kudo T (1996) Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl Environ Microbiol 62:461–468

    CAS  PubMed  Google Scholar 

  • Ohkuma M, Noda S, Kudo T (1999) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171:147–153

    Article  CAS  PubMed  Google Scholar 

  • Patel GB, Agnew BJ, Deschatelets L, Fleming LP, Sprott GD (2000) In vitro assessment of archaeosome stability for developing oral delivery systems. Int J Pharm 194:39–49

    Article  CAS  PubMed  Google Scholar 

  • Pochart P, Lemann F, Flourie B, Pellier P, Goderel I, Rambaud JC (1993) Pyxigraphic sampling to enumerate methanogens and anaerobes in the right colon of healthy humans. Gastroenterology 105:1281–1285

    CAS  PubMed  Google Scholar 

  • Prangishvili D, Holz I, Stieger E, Nickell S, Kristjansson JK, Zillig W (2000) Sulfolobicins, specific proteinaceous toxins produced by strains of the extremely thermophilic archaeal genus Sulfolobus. J Bacteriol 182:2985–2988

    Article  CAS  PubMed  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246

    Article  CAS  PubMed  Google Scholar 

  • Robert C, Bernalier-Donadille A (2003) The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiol Ecol 46:81–89

    Google Scholar 

  • Robichaux M, Howell M, Boopathy R (2003) Growth and activities of sulfate-reducing and methanogenic bacteria in human oral cavity. Curr Microbiol 47:12–16

    Article  CAS  PubMed  Google Scholar 

  • Rutili A, Canzi E, Brusa T, Ferrari A (1996) Intestinal methanogenic bacteria in children of different ages. New Microbiol 19:227–234

    CAS  PubMed  Google Scholar 

  • Schmitt-Wagner D, Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496

    CAS  PubMed  Google Scholar 

  • Shang S, Chen Z, Yu X (2001) Detection of bacterial DNA by PCR and reverse hybridization in the 16S rRNA gene with particular reference to neonatal septicemia. Acta Paediatr 90:179–183

    Article  CAS  PubMed  Google Scholar 

  • Sharp R, Ziemer CJ, Stern MD, Stahl DA (1998) Taxon-specific associations between protozoal and methanogen populations in the rumen and a model rumen system. FEMS Microbiol Ecol 26:71–78

    Google Scholar 

  • Shinzato N, Matsumoto T, Yamaoka I, Oshima T, Yamagishi A (1999) Phylogenetic diversity of symbiotic methanogens living in the hindgut of the lower termite Reticulitermes speratus analyzed by PCR and in situ hybridization. Appl Environ Microbiol 65:837–840

    CAS  PubMed  Google Scholar 

  • Sleigh J, Cursons R, La Pine M (2001) Detection of bacteraemia in critically ill patients using 16S rDNA polymerase chain reaction and DNA sequencing. Intensive Care Med 27:1269–1273

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Hungate RE (1958) Isolation and Characterization of Methanobacterium ruminantium n.sp. J Bacteriol 75:713–718

    CAS  PubMed  Google Scholar 

  • Sprenger WW, Belzen MC van, Rosenberg J, Hackstein JH, Keltjens JT (2000) Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50: 1989–1999

    CAS  PubMed  Google Scholar 

  • Sprott GD, Tolson DL, Patel GB (1997) Archaeosomes as novel antigen delivery systems. FEMS Microbiol Lett 154:17–22

    Article  CAS  PubMed  Google Scholar 

  • Sprott GD, Brisson J, Dicaire CJ, Pelletier AK, Deschatelets LA, Krishnan L, Patel GB (1999) A structural comparison of the total polar lipids from the human archaea Methanobrevibacter smithii and Methanosphaera stadtmanae and its relevance to the adjuvant activities of their liposomes. Biochim Biophys Acta 1440:275–288

    CAS  PubMed  Google Scholar 

  • Strocchi A, Furne J, Ellis C, Levitt MD (1994) Methanogens outcompete sulfate-reducing bacteria for H2 in the human colon. Gut 35:1098–1101

    CAS  PubMed  Google Scholar 

  • Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Dore J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807

    CAS  PubMed  Google Scholar 

  • Swidsinski A, Ladhoff A, Pernthaler A, Swidsinski S, Loening-Baucke V, Ortner M, Weber J, Hoffmann U, Schreiber S, Dietel M, Lochs H (2002) Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54

    PubMed  Google Scholar 

  • Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI (2001) Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200:67–72

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A, Prindiville TP, Gish R, Solnick JV, Coppel RL, Keeffe EB, Ansari A, Gershwin ME (1999) Are infectious agents involved in primary biliary cirrhosis? A PCR approach. J Hepatol 31:664–671

    Article  CAS  PubMed  Google Scholar 

  • Tokura M, Ushida K, Miyazaki K, Kojima Y (1997) Methanogens associated with rumen ciliates. FEMS Microbiol Ecol 22:137–143

    Google Scholar 

  • Ushida K, Jouany JP (1996) Methane production associated with rumen-ciliated protozoa and its effect on protozoan activity. Lett Appl Microbiol 23:129–132

    CAS  PubMed  Google Scholar 

  • Maarel MJ van der, Artz RR, Haanstra R, Forney LJ (1998) Association of marine archaea with the digestive tracts of two marine fish species. Appl Environ Microbiol 64:2894–2898

    PubMed  Google Scholar 

  • Maarel MJ van der, Sprenger W, Haanstra R, Forney LJ (1999) Detection of methanogenic archaea in seawater particles and the digestive tract of a marine fish species. FEMS Microbiol Lett 173:189–194

    Article  PubMed  Google Scholar 

  • Hoek AH van, Alen TA van, Sprakel VS, Leunissen JA, Brigge T, Vogels GD, Hackstein JH (2000) Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258

    Google Scholar 

  • Wintzingerode F von, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  PubMed  Google Scholar 

  • Webster NS, Watts JE, Hill RT (2001) Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote 16S ribosomal RNA gene sequences from a Great Barrier Reef sponge. Mar Biotechnol 3:600–608

    Article  CAS  PubMed  Google Scholar 

  • Whitehead TR, Cotta MA (1999) Phylogenetic diversity of methanogenic Archaea in swine waste storage pits. FEMS Microbiol Lett 179:223–226

    Article  CAS  PubMed  Google Scholar 

  • Whitford MF, Teather RM, Forster RJ (2001) Phylogenetic analysis of methanogens from the bovine rumen. BMC Microbiol 1:5–9

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms—proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87:4576–4579

    CAS  PubMed  Google Scholar 

  • Wright ADG, Williams AJ, Winder B, Christophersen CT, Rodgers SL, Smith KD (2004) Molecular diversity of rumen methanogens from sheep in Western Australia. Appl Environ Microbiol 70:1263–1270

    Article  CAS  PubMed  Google Scholar 

  • Yanagita K, Kamagata Y, Kawaharasaki M, Suzuki T, Nakamura Y, Minato H (2000) Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Biosci Biotechnol Biochem 64:1737–1742

    CAS  PubMed  Google Scholar 

  • Zoetendal EG, Wright A von, Vilpponen-Salmela T, Ben Amor K, Akkermans AD, De Vos WM (2002) Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407

    Article  CAS  PubMed  Google Scholar 

  • Zurek L, Keddie BA (1998) Significance of methanogenic symbionts for development of the American cockroach, Periplaneta americana. J Insect Physiol 44:645–651

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Familien Hede–Nielsens Fond, Denmark, and the Danish SNF Centre “Archaea: Biodiversity and Evolution” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitte Kiær Ahring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, M., Westermann, P. & Ahring, B.K. Archaea in protozoa and metazoa. Appl Microbiol Biotechnol 66, 465–474 (2005). https://doi.org/10.1007/s00253-004-1790-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1790-4

Keywords

Navigation