Skip to main content
Log in

Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

There are two alternative pathways leading to methionine synthesis in microorganisms: The transsulfuration pathway involves cystathionine as the intermediate and utilizes cysteine as the sulfur source, but the direct sulfhydrylation pathway bypasses cystathionine and uses inorganic sulfur instead. While most microorganisms synthesize methionine via either one of these pathways, Corynebacterium glutamicum utilizes both pathways, which appear to be fully functional. In C. glutamicum, each pathway is catalyzed by independent enzymes and is tightly regulated by methionine. Although the physiological significance of parallel pathways remains to be elucidated, their presence suggests metabolic flexibility and efficient adaptation of the organism to its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Alaminos M, Ramos JL (2001) The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and meE gene products. Arch Microbiol 176:151–154

    Article  PubMed  Google Scholar 

  • Andersen GL, Beattie GA, Lindow SE (1998) Molecular characterization and sequence of a methionine biosynthetic locus from Pseudomonas syringae. J Bacteriol 180:4497–4507

    CAS  PubMed  Google Scholar 

  • Belfaiza J, Martel A, Margarita D, Saint Girons I (1998) Direct sulfhydrylation for methionine biosynthesis in Leptospira meyeri. J Bacteriol 180:250–255

    CAS  PubMed  Google Scholar 

  • Biran D, Brot N, Weissbach H, Ron EZ (1995) Heat shock-dependent transcriptional activation of the metA gene of Escherichia coli. J Bacteriol 177:1374–1379

    PubMed  Google Scholar 

  • Biran D, Gur E, Gollan L, Ron EZ (2000) Control of methionine biosynthesis in Escherichia coli by proteolysis. Mol Microbiol 37:1436–1443

    Article  PubMed  Google Scholar 

  • Born TL, Blanchard JS (1999) Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Biochemistry 38:14416–14423

    Article  PubMed  Google Scholar 

  • Born TL, Franklin M, Blanchard JS (2000) Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Haemophilus influenzae met2-encoded homoserine transacetylase. Biochemistry 39:8556–8564

    Google Scholar 

  • Bourhy P, Martel A, Margarita D, Saint Girons I, Belfaiza J (1997) Homoserine O-acetyltransferase, involved in the Leptospira meyeri methionine biosynthetic pathway, is not feedback inhibited. J Bacteriol 179:4396–4398

    PubMed  Google Scholar 

  • Bright SWJ, Lea PJ, Miflin BJ (1979) The regulation of methionine biosynthesis and metabolism in plants and bacteria. Ciba Found Symp 72:101–117

    PubMed  Google Scholar 

  • Brzywczy J, Yamagata S, Paszewski A (1993) Comparative studies on O-acetylhomoserine sulfhydrylase: physiological role and characterization of the Aspergillus nidulans enzyme. Acta Biochim Pol 40:421–428

    PubMed  Google Scholar 

  • Brzywczy J, Sienko M, Kucharska A, Paszewski A (2002) Sulphur amino acid synthesis in Schizosaccharomyces pombe represents a specific variant of sulphur metabolism in fungi. Yeast 19:29–35

    Article  PubMed  Google Scholar 

  • Cremer J, Treptow C, Eggeling L, Sahm H. (1988) Regulation of enzymes of lysine biosynthesis in Corynebacterium glutamicum. J Gen Microbiol 134:3221–3229

    PubMed  Google Scholar 

  • Datko AH, Giovanelli J, Mudd SH (1974) Homocysteine biosynthesis in green plants. O-Phosphorylhomoserine as the physiological substrate for cystathionine γ-synthase. J Biol Chem 249:1139–1155

    PubMed  Google Scholar 

  • Eggeling L, Sahm H (1999) l-Glutamate and l-lysine: traditional products with impetuous developments. Appl Microbiol Biotechnol 52:146–153

    CAS  Google Scholar 

  • Eggeling L, Morbach S, Sahm H (1997) The fruits of molecular physiology: engineering the L-isoleucine biosynthesis pathway in Corynebacterium glutamicum. J Biotechnol 56:167–182

    Article  CAS  Google Scholar 

  • Flavin M (1971) Trans-sulfuration reactions: introduction. Methods Enzymol 17B:416–417

    Google Scholar 

  • Flavin M, Slaughter C (1967) Enzymatic synthesis of homocysteine or methionine directly from O-succinyl-homoserine. Biochim Biophys Acta 132:400–405

    CAS  PubMed  Google Scholar 

  • Foglino M, Borne F, Bally M, Ball G, Patte JC (1995) A direct sulfhydylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology 141:431–439

    CAS  PubMed  Google Scholar 

  • Follettie MT, Shin HK, Sinskey AJ (1988) Organization and regulation of the Corynebacterium glutamicum hom-thrB and thrC loci. Mol Microbiol 2:53–62

    PubMed  Google Scholar 

  • Giovanelli J, Mudd SH, Datko AH (1978) Homocysteine biosynthesis in green plants. Physiological importance of the transsulfuration pathway in Chlorella sorokiniana growing under steady state conditions with limiting sulfate. J Biol Chem 253:5665–5677

    PubMed  Google Scholar 

  • Greene RC (1996) Biosynthesis of methionine. In: Escherichia coli and Salmonella: cellular and molecular biology, 2nd edition, pp. 542–560. Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger JE, eds. ASM Press, Washington DC

  • Großmann K, Herbster K, Mack M (2000) Rapid cloning of metK encoding methionine adenosyltransferase from Corynebacterium glutamicum by screening a genomic library on a high density colony-array. FEMS Microbiol Lett 193:99–103

    Article  PubMed  Google Scholar 

  • Hwang B-J, Kim Y, Kim H-B, Hwang H-J, Kim J-H, Lee H-S (1999) Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding cystathionine γ-synthase. Mol Cells 9:300–308

    PubMed  Google Scholar 

  • Hwang B-J, Yeom H-J, Kim Y, Lee H-S (2002) Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol 184:1277–1286

    CAS  PubMed  Google Scholar 

  • Jetten MSM, Sinskey AJ (1995) Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 15:73–103

    CAS  PubMed  Google Scholar 

  • Kaplan MM, Flavin M (1966) Cystathionine γ-synthetase of Salmonella. J Biol Chem 241:4463–4471

    PubMed  Google Scholar 

  • Kase H, Nakayama K (1974a) Production of O-acetyl-l-homoserine by methionine analog-resistant mutants and regulation of homoserine-O-transacetylase in Corynebacterium glutamicum. Agric Biol Chem 38:2021–2030

    CAS  Google Scholar 

  • Kase H, Nakayama K (1974b) The regulation of l-methionine synthesis and the properties of cystathionine γ-synthase and β-cystathionase in Corynebacterium glutamicum. Agric Biol Chem 38:2235–2242

    CAS  Google Scholar 

  • Kase H, Nakayama K (1975a) Isolation and characterization of S-adenosylmethionine-requiring mutants and role of S-adenosylmethionine in the regulation of methionine biosynthesis in Corynebacterium glutamicum. Agric Biol Chem 39:161–168

    CAS  Google Scholar 

  • Kase H, Nakayama K (1975b) l-Methionine production by methionine analog-resistant mutants of Corynebacterium glutamicum. Agric Biol Chem 39:153–160

    CAS  Google Scholar 

  • Kerr DS, Flavin M (1970) The regulation of methionine synthesis and the nature of cystathionine γ-synthase in Neurospora. J Biol Chem 245:1842–1855

    PubMed  Google Scholar 

  • Kertesz MA (1999) Riding the sulfur cycle—metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol Rev 24:135–175

    Article  Google Scholar 

  • Kim J-W, Kim H-J, Kim Y, Lee M-S, Lee H-S (2001) Properties of the Corynebacterium glutamicum metC gene encoding cystathionine β-lyase. Mol Cells 11:220–225

    PubMed  Google Scholar 

  • Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger JE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington DC, pp. 514–527

  • Malumbres M, Martín JF (1996) Molecular control mechanisms of lysine and threonine biosynthesis in amino acid-producing corynebacteria: redirecting carbon flow. FEMS Microbiol Lett 143:103–114

    CAS  PubMed  Google Scholar 

  • Mares R, Urbanowski ML, Stauffer GV (1992) Regulation of the Salmonella typhimurium metA gene by the MetR protein and homocysteine. J Bacteriol 174:390–397

    CAS  PubMed  Google Scholar 

  • Martens J-H, Barg H, Warren MJ, Jahn D (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285

    Article  PubMed  Google Scholar 

  • Marzluf GA (1994) Genetics and molecular genetics of sulfur assimilation in the fungi. Adv Genet 31:187–206

    PubMed  Google Scholar 

  • Marzluf GA (1997) Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51:73–96

    CAS  PubMed  Google Scholar 

  • Miyajima R, Shiio I (1973) Regulation of aspartate family amino acid biosynthesis in Brevibacterium flavum. VII. Properties of homoserine O-transacetylase. J Biochem 73:1061–1068

    PubMed  Google Scholar 

  • Mondal S, Chatterjee SP (1994) Enhancement of methionine production by methionine analogue ethionine resistant mutants of Brevibacterium heali. Acta Biotechnol 14:199–204

    CAS  Google Scholar 

  • Nakamori S, Kobayashi S, Nishimura T, Takagi H (1999) Mechanism of l-methionine overproduction by Escherichia coli: the replacement of Ser-54 by Asn in the MetJ protein causes the derepression of L-methionine biosynthetic enzymes. Appl Microbiol Biotechnol 52:179–185

    Article  PubMed  Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer Associates, Sunderland, Massachusetts, USA

    Google Scholar 

  • O′Toole GA, Rondon MR, Trzebiatowski JR, Suh S-J, Escalante-Semerena JC (1996) Biosynthesis and utilization of adenosyl-cobalamin (coenzyme B12). In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger JE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington DC, pp. 542–560

  • Ozaki H, Shiio I (1982) Methionine biosynthesis in Brevibacterium flavum: properties and essential role of O-acetylhomoserine sulfhydrylase. J Biochem 91:1163–1171

    PubMed  Google Scholar 

  • Parish T, Gordhan BG, McAdam RA, Duncan K, Mizrahi V, Stoker NG (1999) Production of mutants in amino acid biosynthesis genes of Mycobacterium tuberculosis by homologous recombination. Microbiology 145:3497–3503

    PubMed  Google Scholar 

  • Park S-D, Lee J-Y, Kim Y, Kim J-H, Lee H-S (1998) Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum. Mol Cells 8:286–294

    PubMed  Google Scholar 

  • Paszewski A (1993) Sulfur amino acid metabolism and its regulation in fungi: studies with Aspergillus nidulans. Acta Biochim Pol 40:445–449

    PubMed  Google Scholar 

  • Paszewski A, Prazmo W, Nadolska J, Regulski M (1984) Mutations affecting the sulphur assimilation pathway in Aspergillus nidulans: their effect on sulphur amino acid metabolism. J Gen Microbiol 130:1113–1121

    PubMed  Google Scholar 

  • Paszewski A, Brzywczy J, Natorff R (1994) Sulphur metabolism. Prog Ind Microbiol 29:299–319

    PubMed  Google Scholar 

  • Patte J-C (1996) Biosynthesis of threonine and lysine. In: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger JE (eds) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. ASM Press, Washington DC, pp. 528–541

  • Phillips SEV, Stockley PG (1996) Structure and function of Escherichia coli met repressor: similarities and contrasts with trp repressor. Philos Trans R Soc Lond B Biol Sci 351:527–35

    PubMed  Google Scholar 

  • Ravanel S, Droux M, Douce R (1995) Methionine biosynthesis in higher plants. I. Purification and characterization of cystathionine γ-synthase from spinach chloroplasts. Arch Biochem Biophys 316:572–584

    CAS  PubMed  Google Scholar 

  • Ron EZ (1975) Growth rate of Enterobacteriaceae at elevated temperatures: limitation by methionine. J Bacteriol 124:243-246

    PubMed  Google Scholar 

  • Ron EZ, Shani M (1971) Growth rate of Escherichia coli at elevated temperatures: reversible inhibition of homoserine trans-succinylase. J Bacteriol 107:397–400

    PubMed  Google Scholar 

  • Rossol I, Pühler A (1992) The Corynebacterium glutamicum aecD gene encodes a C-S lyase with α,β-elimination activity that degrades aminoethylcysteine. J Bacteriol 174:2968-2977

    PubMed  Google Scholar 

  • Rowbury, RJ (1983) Methionine biosynthesis and its regulation. In: Herman KM, Somervill RL (eds) Amino acids:biosynthesis and genetic regulation. Addison-Wesley, Reading, Massachusetts, pp. 191–211

  • Saint-Girons I, Parsot C, Zakin MM, Bârzu O, Cohen GN (1988) Methionine biosynthesis in Enterobacteriaceae: biochemical, regulatory, and evolutionary aspects. CRC Crit Rev Biochem 23(Suppl 1):S1—S42

    PubMed  Google Scholar 

  • Sahm H, Eggeling L, Eikmanns B, Krämer R (1995) Metabolic design in amino acid producing bacterium Corynebacterium glutamicum. FEMS Microbiol Rev 16:243–252

    CAS  Google Scholar 

  • Sahm H, Eggeling L, de Graaf AA (2000) Pathway analysis and metabolic engineering in Corynebacterium glutamicum. Biol Chem 381:899-910

    PubMed  Google Scholar 

  • Schrumpf B, Schwarzer A, Kalinowski J, Pühler A, Eggeling L, Sahm H (1991) A functionally split pathway for lysine synthesis in Corynebacterium glutamicum. J Bacteriol 173:4510–4516

    PubMed  Google Scholar 

  • Sekowska A, Kung H-F, Danchin A (2000) Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol 2:145–177

    PubMed  Google Scholar 

  • Shiio I, Ozaki H (1981) Feedback inhibition by methionine and S-adenosylmethionine, and desensitization of homoserine O-acetyltransferase in Brevibacterium flavum. J Biochem 89:1493–1500

    PubMed  Google Scholar 

  • Shiio I, Ozaki H (1987) O-Acetylhomoserine sulfhydrylase from Brevibacterium flavum. Methods Enzymol 143:470–474

    CAS  Google Scholar 

  • Shimizu H, Yamagata S, Masui R, Inoue Y, Shibata T, Yokoyama S, Kuramitsu S, Iwama T (2001) Cloning and overexpression of the oah1 gene encoding O-acetyl-l-homoserine sulfhydrylase of Thermus thermophilus HB8 and characterization of the gene product. Biochim Biophys Acta 1549:61–72

    Article  PubMed  Google Scholar 

  • Simon M, Hong J-S (1983) Direct homocysteine biosynthesis from O-succinylhomoserine in Escherichia coli: an alternate pathway that bypasses cystathionine. J Bacteriol 153:558–561

    PubMed  Google Scholar 

  • Simonics T, Bánszky L, Maráz A (2002) Genetics of sulphate assimilation in Schizosaccharomyces pombe. Acta Microbiol Immunol Hung 49:279–283

    PubMed  Google Scholar 

  • Smith DA (1971) S-Amino acid metabolism and its regulation in Escherichia coli and Salmonella typhimurium. Adv Genet 16:141–165

    PubMed  Google Scholar 

  • Smith DA, Parish T, Stoker NG, Bancroft GJ (2001) Characterization of auxotrophic mutants of Mycobacterium tuberculosis and their potential as vaccine candidates. Infect Immun 69:1142–1150

    Article  PubMed  Google Scholar 

  • Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Annu Rev Nutr 6:179–209

    Google Scholar 

  • Taté R, Riccio A, Caputo E, Iaccarino M, Patriarca EJ (1999) The Rhizobium etli metZ gene is essential for methionine biosynthesis and nodulation of Phaseolus vulgaris. Mol Plant Microbe Interact 12:24–34

    PubMed  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    PubMed  Google Scholar 

  • Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:533–606

    CAS  Google Scholar 

  • Urbanowski ML, Stauffer LT, Plamann LS, Stauffer GV (1987) A new methionine locus, metR, that encodes a trans-acting protein required for activation of metE and metH in Escherichia coli and Salmonella typhimurium. J Bacteriol 169:1391–1397

    PubMed  Google Scholar 

  • Vermeij P, Kertesz MA (1999) Pathways of assimilative sulfur metabolism in Pseudomonas putida. J Bacteriol 181:5833–5837

    CAS  PubMed  Google Scholar 

  • Wada M, Awano N, Haisa K, Takagi H, Nakamori S (2002) Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol Lett 217:103–107

    Article  PubMed  Google Scholar 

  • Weissbach H, Brot N (1991) Regulation of methionine synthesis in Escherichia coli. Mol Microbiol 5:1593–1597

    PubMed  Google Scholar 

  • Wiebers JL, Garner HR (1967) Homocysteine and cysteine synthetases of Neurospora crassa. Purification, properties, and feedback control of activity. J Biol Chem 242:12–23

    PubMed  Google Scholar 

  • Wild CM, McNally T, Phillips SEV, Stockley PG (1996) Effects of systematic variation of the minimal Escherichia coli met consensus operator site: in vivo and in vitro met repressor binding. Mol Microbiol 21:1125–1135

    PubMed  Google Scholar 

  • Williams SJ, Senaratne RH, Mougous JD, Riley LW, Bertozzi CR (2002) 5′-Adenosinephosphosulfate lies at a metabolic branch point in mycobacteria. J Biol Chem 277:32606–32615

    Article  PubMed  Google Scholar 

  • Wyman A, Paulus H (1975) Purification and properties of homoserine transacetylase from Bacillus polymyxa. J Biol Chem 250:3897–3903

    PubMed  Google Scholar 

  • Wyman A, Shelton E, Paulus H (1975) Regulation of homoserine transacetylase in whole cells of Bacillus polymyxa. J Biol Chem 250:3904–3908

    PubMed  Google Scholar 

  • Yamagata S (1989) Roles of O-acetyl-l-homoserine sulfhydrylases in microorganisms. Biochimie 71:1125–1143

    Article  PubMed  Google Scholar 

  • Yamagata S, Ichioka K, Goto K, Mizuno Y, Iwama T (2001) Occurrence of transsulfuration in synthesis of l-homocysteine in an extremely thermophilic bacterium, Thermus thermophilus HB8. J Bacteriol 183:2086–2092

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The researchers thank Dr. Younhee Kim and Mr. Matt Witherspoon for their careful reading and constructive comments on the manuscript. This work was supported by grants from BASF Korea (to H.-S. Lee) and the Ministry of Science and Technology (via 21C Microbial Genomics and Applications Center to H.-S. Lee).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-S. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HS., Hwang, BJ. Methionine biosynthesis and its regulation in Corynebacterium glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl Microbiol Biotechnol 62, 459–467 (2003). https://doi.org/10.1007/s00253-003-1306-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1306-7

Keywords

Navigation