Skip to main content
Log in

Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment

Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Application of polyhydroxyalkanoates (PHAs) and related biodegradable polymers has gained momentum in various areas of biotechnology. A promising application that started appearing in the past decade is the use of PHAs as the solid substrate for denitrification of water and wastewater. This type of denitrification, termed here "solid-phase denitrification", has several advantages over the conventional system supplemented with liquid organic substrate. PHAs serve not only as constant sources of reducing power for denitrification but also as solid matrices favorable for development of microbial films. In addition, in contrast to conventional processes, the use of PHAs has no potential risk of release of dissolved organic carbon with the resultant deterioration of effluent water quality. If the production cost of PHAs can be brought down, its application to the denitrification process will become economically more promising. A number of PHA-degrading denitrifying bacteria have been isolated and characterized from activated sludge and continuous flow-bed reactors for denitrification with PHAs. Most of these isolates have been assigned phylogenetically to members of β-Proteobacteria, especially those of the family Comamonadaceae. The metabolic and regulatory relationships between PHA degradation and denitrification, and the interactive relationship between PHA-degrading cells and the solid surface structure are important subjects awaiting future studies, which would provide a new insight into our comprehensive understanding of the solid-phase denitrification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

References

  • Abe H, Doi Y (1999) Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers. Int J Biol Macromol 25:185–192

    Article  CAS  PubMed  Google Scholar 

  • Abou-Zeid D, Müller R, Deckwer WJ (2001) Degradation of natural and synthetic polyesters under anaerobic conditions. J Biotechnol 86:113–126

    Article  CAS  PubMed  Google Scholar 

  • Amann RL, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    CAS  PubMed  Google Scholar 

  • Aravinthan V, Mino T, Takizawa S, Satoh H, Matsuo T (2001) Sludge hydrolysate as a carbon source for denitrification. Water Sci Technol 4:191–199

    Google Scholar 

  • Beun JJ, Verhoef EV, Van Loosdrecht MC, Heijnen JJ (2000) Stoichiometry and kinetics of poly-β-hydroxybutyrate metabolism under denitrifying conditions in activated sludge cultures. Biotechnol Bioeng 68:496–507

    Article  CAS  PubMed  Google Scholar 

  • Biedermann J, Owen AJ, Schloe KT, Gassner F, Süssmuth R (1997) Interaction between poly-3-hydroxybutyrate-co-3-hydroxyvalerate and a denitrifying Pseudomonas strain. Can J Microbiol 43:561–568

    CAS  PubMed  Google Scholar 

  • Boley A, Müller WR, Haider G (2000) Biodegradable polymers as solid substrate and biofilm carrier for denitrification in recirculated aquaculture systems. Aquacult Eng 22:75–86

    Article  Google Scholar 

  • Braker G, Fesefeldt A, Witzel KP (1998) Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl Environ Microbiol 64:3769–3775

    CAS  PubMed  Google Scholar 

  • Briese BH, Jendrossek D, Schlegel HG (1994) Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by aerobic sewage sludge. FEMS Microbiol Lett 117:107–111

    CAS  PubMed  Google Scholar 

  • Budwill K, Fedorak PM, Page WJ (1992) Methanogenic degradation of poly(3-hydroxyalkanoates). Appl Environ Microbiol 58:1398–1401

    CAS  Google Scholar 

  • Doi Y, Mukai K, Kasuya K, Yamada K (1994) Biodegradation of biosynthetic and chemosynthetic polyhydroxyalkanoates. In: Doi Y, Fukuda K (eds) Biodegradable plastics and polymer. Elsevier, Amsterdam, pp 39–51

  • Gao D, Maehara A, Yamane T, Ueda S (2001) Identification of the intracellular polyhydroxyalkanoate depolymerase gene of Paracoccus denitrificans and some properties of the gene product. FEMS Microbiol Lett 196:159–164

    Article  CAS  PubMed  Google Scholar 

  • Gumaelius L, Magnusson G, Pettersson B, Dalhammar G (2001) Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51:999–1006

    CAS  PubMed  Google Scholar 

  • Hallin S, Lindgren PE (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657

    CAS  PubMed  Google Scholar 

  • Hallin S, Rothman M, Pell M (1996) Adaptation of denitrifying bacteria to acetate and methanol in activated sludge. Water Res 30:1445–1450

    Article  CAS  Google Scholar 

  • Hankermeyer CR, Tjeerdema RS (1999) Polyhydroxybutyrate: plastic made and degraded by microorganisms. Rev Environ Contam Toxicol 159:1–24

    CAS  PubMed  Google Scholar 

  • Heinemann A (1995) Denitrifikation mit Co-Immobilisaten aus Bakterien und Poly-β-Hydroxybutyrat. Stuttg Ber Siedlungwasserwirtsch, vol 135. Kommissionsverlag Oldenbourg, Munich, Germany

  • Hiraishi A (1999) Isoprenoid quinones as biomarkers of microbial populations in the environment. J Biosci Bioeng 88:449–460

    Article  CAS  Google Scholar 

  • Iwata T, Doi Y, Nakayama S, Sasatsuki H, Teramachi S (1999) Structure and enzymatic degradation of poly(3-hydroxybutyrate) copolymer single crystals with an extracellular PHB depolymerase from Alcaligenes faecalis T1. Int J Biol Macromol 25:169–176

    Article  CAS  PubMed  Google Scholar 

  • Jendrossek D (2001) Microbial degradation of polyesters. Adv Biochem Eng Biotechnol 71:293–325

    CAS  PubMed  Google Scholar 

  • Jendrossek D, Schirmer A, Schlegel HG (1996) Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463

    Article  CAS  PubMed  Google Scholar 

  • Khan ST, Hiraishi A (2001) Isolation and characterization of a new poly(3-hydroxybutyrate)-degrading, denitrifying bacterium from activated sludge. FEMS Microbiol Lett 205:253–257

    Article  PubMed  Google Scholar 

  • Khan ST, Hiraishi A (2002) Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J Gen Appl Microbiol 48:(in press)

  • Khan ST, Horiba Y, Yamamoto M, Hiraishi A (2002) Members of the family Comamonadaceae as primary poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-degrading denitrifiers in activated sludge as revealed by a polyphasic approach. Appl Environ Microbiol 68:3206–3214

    Article  CAS  PubMed  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    CAS  PubMed  Google Scholar 

  • Krupp LR, Jewell WJ (1992) Biodegradability of modified plastic films in controlled biological environments. Environ Sci Technol 26:193–198

    CAS  Google Scholar 

  • Lemmer H, Roth D, Schade M (1994) Population densities and enzymatic activities of heterotrophic bacteria in sewer biofilms and activated sludge. Water Res 28:1341–1346

    CAS  Google Scholar 

  • Madison L, Huisman W, Gjalt W (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Mol Biol Rev 63:21–53

    CAS  PubMed  Google Scholar 

  • Mergaert J, Anderson C, Wouters A, Swings J, Kersters K (1992) Biodegradation of polyhydroxyalkanoates. FEMS Microbiol Rev 9:317–321

    CAS  PubMed  Google Scholar 

  • Mergaert J, Webb A, Anderson C, Wouters A, Jeans S (1993) Microbial degradation of poly(3-hydoxybutyrate) and poly( 3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59:3233–3238

    CAS  PubMed  Google Scholar 

  • Mergaert J, Anderson C, Wouters A, Jeans S (1994) Microbial degradation of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in compost. J Environ Polym Degrad 2:177–183

    CAS  Google Scholar 

  • Mergaert J, Wouters A, Anderson C, Jeans S (1995) In situ biodegradation of poly (3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in natural waters. Can J Microbiol 41 (Suppl 1):154–159

    CAS  PubMed  Google Scholar 

  • Mergaert J, Glorieux G, Hauben L, Storms V, Mau M, Jeans S (1996) Biodegradation of poly(3-hydroxyalkanoates) in anaerobic sludge and characterization of a poly(3-hydroxyalkanoates) degrading anaerobic bacterium. Syst Appl Microbiol 19:407–413

    CAS  Google Scholar 

  • Mergaert J, Boley A, Cnockaert MC, Müller WR, Swings J (2001) Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor. Syst Appl Microbiol 24:303–310

    CAS  PubMed  Google Scholar 

  • Müller WR, Sperandio A, Erne M (1985) Denitrifikation mit Biologisch abbaubaren Trägermaterialien in der weitergehenden Abwasserreinigung. Landwirtschaftl Forsch 38:132–138

    Google Scholar 

  • Müller WR, Heinemann A, Schäfer C, Wurmthaler J, Reutter T (1992) Aspects of PHA (poly-ε-hydroxy-butyric-acid) as an H-donor for denitrification in water treatment processes. Water Supply 10:79–90

    Google Scholar 

  • Nielsen JL, Nielsen PH (2002) Enumeration of acetate-consuming bacteria by microautoradiography under oxygen and nitrate respiring conditions in activated sludge. Water Res 36:421–428

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Tokiwa Y (1993) Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degrad 1:227–233

    CAS  Google Scholar 

  • Rieker C (1990) Über die mikrobiologische Trinkwasserdenitrifikation in Festbettreaktoren mit natürlicher Besiedlung auf Poly-β-hydroxybutyrat, Weich-Polyvinylchlorid und Polyethylen mit Stärke. Stuttg Ber Siedlungwasserwirtsch, vol 111, Kommisionsverlag Oldenbourg, Munich, Germany

  • Schloe K, Gillis M, Hoste B, Pot B, Vancanneyt M, Mergaert J, Swings J, Biedermann J, Süssmuth R (2000) Polyphasic characterization of poly-3-hydroxybutyrate-co-3-hydroxyvalerate(P(HB-co-HV)) metabolising and denitrifying Acidovorax sp. strains. Syst Appl Microbiol 23:364–372

    CAS  PubMed  Google Scholar 

  • Sei K, Nakao M, Mori K, Ike M, Kohno T, Fujita M (2001) Design of PCR primers and a gene probe for extensive detection of poly(3-hydroxybutyrate) (PHB)-degrading bacteria possessing fibronectin type III linker type-PHB depolymerases. Appl Microbiol Biotechnol 55:801–806

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A (1992) Biodegradable plastics. Curr Opin Biotechnol 3:281–297

    Google Scholar 

  • Steinbüchel A, Aerts K, Babel W, Föllner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Fürst U, Pries A, Valentin HE, Wieczorek R (1995) Consideration on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusion. Can J Microbiol 41(Suppl 1):94–105

    PubMed  Google Scholar 

  • Suyama T, Tokiwa Y, Ouichanpagdee O, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011

    CAS  PubMed  Google Scholar 

  • Wais S, Süssmuth R (1993) Einsatz einer Starterkultur zur Denitrifikation in Festbettreaktoren mit Poly-(3-Hydroxybuttersäure-Co-3-Hydroxyvaleriansäure) als Füllmaterial. Wasser Abwasser 134:80–84

    CAS  Google Scholar 

  • Wais S, Süssmuth R (1994) Simultaneous analysis of nitrate, nitrite, acetate and 3-hydroxybutyrate by HPLC. J Microbiol Methods 19:215–222

    CAS  Google Scholar 

  • Wurmthaler J (1995) Biologische Nitratelimination mit einem Festsubstrat bei der Trinkwasseraufbereitung. Stuttg Ber Siedlungwasserwirtsch, vol 132, Kommisionsverlag Oldenbourg, Munich, Germany

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a grand-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan no. 14390028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hiraishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiraishi, A., Khan, S.T. Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61, 103–109 (2003). https://doi.org/10.1007/s00253-002-1198-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-002-1198-y

Keywords

Navigation