Skip to main content

Advertisement

Log in

Stabilised DNA secondary structures with increasing transcription localise hypermutable bases for somatic hypermutation in IGHV3-23

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Somatic hypermutation (SHM) mediated by activation-induced cytidine deaminase (AID) is a transcription-coupled mechanism most responsible for generating high affinity antibodies. An issue remaining enigmatic in SHM is how AID is preferentially targeted during transcription to hypermutable bases in its substrates (WRC motifs) on both DNA strands. AID targets only single stranded DNA. By modelling the dynamical behaviour of IGHV3-23 DNA, a commonly used human variable gene segment, we observed that hypermutable bases on the non-transcribed strand are paired whereas those on transcribed strand are mostly unpaired. Hypermutable bases (both paired and unpaired) are made accessible to AID in stabilised secondary structures formed with increasing transcription levels. This observation provides a rationale for the hypermutable bases on both the strands of DNA being targeted to a similar extent despite having differences in unpairedness. We propose that increasing transcription and RNAP II stalling resulting in the formation and stabilisation of stem-loop structures with AID hotspots in negatively supercoiled region can localise the hypermutable bases of both strands of DNA, to AID-mediated SHM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bachl J, Carlson C, Gray-Schopfer V, Dessing M, Olsson C (2001) Increased transcription levels induce higher mutation rates in a hypermutating cell line. J Immunol 166:5051–5057

    PubMed  CAS  Google Scholar 

  • Barbas SM, Ditzel HJ, Salonen EM, Yang WP, Silverman GJ, Burton DR (1995) Human autoantibody recognition of DNA. Proc Natl Acad Sci USA 92:2529–2533

    Article  PubMed  CAS  Google Scholar 

  • Betz A, Milstein C, Gonzalez-Fernandes R, Pannell R, Larson T, Neuberger M (1994) Elements regulating somatic hypermutation of an immunoglobulin K gene: critical role for the intron enhancer/matrix attachment region. Cell 77:239–248

    Article  PubMed  CAS  Google Scholar 

  • Bransteitter R, Pham P, Scharff M, Goodman M (2003) Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci USA 100:4102–4107

    Article  PubMed  CAS  Google Scholar 

  • Bransteitter R, Pham P, Calabrese P, Goodman MF (2004) Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J Biol Chem 279:51612–51621

    Article  PubMed  CAS  Google Scholar 

  • Brezinschek HP, Brezinschek RI, Lipsky PE (1995) Analysis of the heavy chain repertoire of human peripheral B cells using single-cell polymerase chain reaction. J Immunol 155:190–202

    PubMed  CAS  Google Scholar 

  • Burkala E, Reimers JM, Schmidt KH, Davis N, Wei P (2007) Wright BE (2007) Secondary structures as predictors of mutation potential in the lacZ gene of Escherichia coli. Microbiology 153(Pt 7):2180–2189

    Article  PubMed  CAS  Google Scholar 

  • Canugovi C, Samaranayake M, Bhagwat AS (2009) Transcriptional pausing and stalling causes multiple clustered mutations by human activation-induced deaminase. FASEB J 23:34–44

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri J, Tian M, Khuong C, Chua K, Pinaud E, Alt FW (2003) Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422:726–730

    Article  PubMed  CAS  Google Scholar 

  • Dayn A, Malkhosyan S, Mirkin SM (1992) Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res 20:5991–5997

    Article  PubMed  CAS  Google Scholar 

  • Dickerson S, Market E, Besmer E, Papavasiliou FN (2000) AID mediates hypermutation by deaminating single stranded DNA. J Exp Med 197:1291–1296

    Article  Google Scholar 

  • Duquette ML, Pham P, Goodman MF, Maizels N (2005) AID binds to transcription-induced structures in c-MYC that map to regions associated with translocation and hypermutation. Oncogene 24:5791–5798

    Article  PubMed  CAS  Google Scholar 

  • Duvvuri B, Duvvuri VR, Grigull J, Martin A, Pan-Hammarström Q, Wu GE, Larijani M (2011) Altered spectrum of somatic hypermutation in common variable immunodeficiency disease characteristic of defective repair of mutations. Immunogenetics 63:1–11

    Article  PubMed  Google Scholar 

  • Eftedal I, Guddal PH, Slupphaug G, Volden G, Krokan HE (1993) Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase. Nucleic Acids Res 21:2095–2101

    Article  PubMed  CAS  Google Scholar 

  • Fukita Y, Jacobs H, Rajewsky K (1998) Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity 9:105–114

    Article  PubMed  CAS  Google Scholar 

  • Gearhart PJ, Bogenhagen DF (1983) Clusters of point mutations are found exclusively around rearranged antibody variable genes. Proc Natl Acad Sci USA 80:3439–3443

    Article  PubMed  CAS  Google Scholar 

  • Giardina C, Perez-Riba M, Lis JT (1992) Promoter melting and TFIID complexes on Drosophila genes in vivo. Genes Dev 6:190–2200

    Article  Google Scholar 

  • Gilmour DS (2009) Promoter proximal pausing on genes in metazoans. Chromosoma 118:1–10

    Article  PubMed  CAS  Google Scholar 

  • Goyenechea B, Klix N, Yelamos J, Williams GT, Riddell A, Neuberger MS, Milstein C (1997) Cells strongly expressing Ig(kappa) transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers. EMBO J 16:3987–3994

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Davis M, Sinn E, Patten P, Hood L (1981) Antibody diversity: somatic hypermutation of rearranged VH genes. Cell 27:573–581

    Article  PubMed  CAS  Google Scholar 

  • Krasilnikov AS, Podtelezhnikov A, Vologodskii A, Mirkin SM (1999) Large-scale effects of transcriptional DNA supercoiling in vivo. J Mol Biol 292:1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Krohn M, Pardon B, Wagner R (1992) Effects of template topology on RNA polymerase pausing during in vitro transcription of the Escherichia coli rrnB leader region. Mol Microbiol 6:581–589

    Article  PubMed  CAS  Google Scholar 

  • Larijani M, Martin A (2007) Single-stranded DNA structure and positional context of the target cytidine determine the enzymatic efficiency of AID. Mol Cell Biol 27:8038–8048

    Article  PubMed  CAS  Google Scholar 

  • Larijani M, Frieder D, Basit W, Martin A (2005) The mutation spectrum of purified AID is similar to the mutability index in Ramos cells and in ung(−/−)msh2(−/−) mice. Immunogenetics 56:840–845

    Article  PubMed  CAS  Google Scholar 

  • Larijani M, Petrov AP, Kolenchenko O, Berru M, Krylov SN, Martin A (2007) AID associates with single-stranded DNA with high affinity and a long complex half-life in a sequence-independent manner. Mol Cell Biol 27:20–30

    Article  PubMed  CAS  Google Scholar 

  • Lebecque G, Gearhart PJ (1990) Boundaries of somatic mutation in rearranged immunoglobnlin genes: 5′ boundary is near the promoter, and 3′ boundary is −1 kb from V(D) J gene. J Exp Med 172:1717–1727

    Article  PubMed  CAS  Google Scholar 

  • Lee DN, Landick R (1992) Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J Mol Biol 228:759–777

    Article  PubMed  CAS  Google Scholar 

  • Lis JT (2007) Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 450:198–202

    Article  PubMed  CAS  Google Scholar 

  • Liu LF, Wang JC (1987) Super coiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84:7024–7027

    Article  PubMed  CAS  Google Scholar 

  • MacCarthy T, Kalis SL, Roa S, Pham P, Goodman MF, Scharff MD, Bergman A (2009) V-region mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic properties of AID and the sequence environment. Proc Natl Acad Sci USA 106:8629–8634

    Article  PubMed  CAS  Google Scholar 

  • Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33:W577–W581, Web Server issue

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Scharff MD (2002) AID and mismatch repair in antibody diversification. Nat Rev Immunol 2:605–614

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Bardwell PD, Woo CJ, Fan M, Shulman MJ, Scharff MD (2002) Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415:802–806

    Article  PubMed  CAS  Google Scholar 

  • Michael N, Martin TE, Nicolae D, Kim N, Padjen K, Zhan P, Nguyen H, Pinkert C, Storb U (2002) Effects of sequence and structure on the hypermutability of immunoglobulin genes. Immunity 16:123–134

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T (1999) Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274:18470–18476

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563

    Article  PubMed  CAS  Google Scholar 

  • Nambu Y, Sugai M, Gonda H, Lee CG, Katakai T, Agata Y, Yokota Y, Shimizu A (2003) Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302:2137–2140

    Article  PubMed  CAS  Google Scholar 

  • Neuberger MS, Harris RS, Di Noia J, Petersen-Mahrt SK (2003) Immunity through DNA deamination. Trends Biochem Sci 28:305–312

    Article  PubMed  CAS  Google Scholar 

  • Neuberger MS, Di Noia JM, Beale RC, Williams GT, Yang Z, Rada C (2005) Somatic hypermutation at AT pairs: polymerase error versus dUTP incorporation. Nat Rev Immunol 5:171–178

    Article  PubMed  CAS  Google Scholar 

  • Odegard VH, Schatz DG (2006) Targeting of somatic hypermutation. Nat Rev Immunol 6:573–583

    Article  PubMed  CAS  Google Scholar 

  • Opel ML, Hatfield GW (2001) DNA supercoiling-dependent transcriptional coupling between the divergently transcribed promoters of the ilvYC operon of Escherichia coli is proportional to promoter strengths and transcript lengths. Mol Microbiol 39:191–198

    Article  PubMed  CAS  Google Scholar 

  • Papavasiliou FN, Schatz DG (2002) Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109(Suppl):S35–S44

    Article  PubMed  CAS  Google Scholar 

  • Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, Resch W, Yamane A, Reina San-Martin B, Barreto V, Nieland TJ, Root DE, Casellas R, Nussenzweig MC (2010) Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143:122–133

    Article  PubMed  CAS  Google Scholar 

  • Peterlin BM, Price DH (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Storb U (1996) Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity 4:57–65

    Article  PubMed  CAS  Google Scholar 

  • Petersen-Mahrt SK, Harris RS, Neuberger MS (2002) AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418:99–103

    Article  PubMed  CAS  Google Scholar 

  • Pham P, Bransteitter R, Petruska J, Goodman M (2003) Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424:103–107

    Article  PubMed  CAS  Google Scholar 

  • Poltoratsky V, Goodman MF, Scharff MD (2000) Error-prone candidates vie for somatic mutation. J Exp Med 192:F27–F30

    Article  PubMed  CAS  Google Scholar 

  • Rada C, Milstein C (2001) The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially. EMBO J 20:4570–4576

    Article  PubMed  CAS  Google Scholar 

  • Ramiro AR, Stavropoulos P, Jankovic M, Nussenzweig MC (2003) Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 14:14

    Google Scholar 

  • Reaban ME, Griffin JA (1990) Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region. Nature 348:342–344

    Article  PubMed  CAS  Google Scholar 

  • Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Labelouse R, Gennery A, Tezcan I, Ersoy F, Kayserili H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A, Durandy A (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102:565–575

    Article  PubMed  CAS  Google Scholar 

  • Rogozin IB, Kolchanov NA (1992) Somatic hypermutagenesis in immunoglobulin genes, II: Influence of neighbouring base sequences on mutagenesis. Biochim Biophy Acta 1171:11–18

    CAS  Google Scholar 

  • Ronai D, Iglesias-Ussel MD, Fan M, Li Z, Martin A, Scharff MD (2007) Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. J Exp Med 204:181–190

    Article  PubMed  CAS  Google Scholar 

  • Schmidt KH, Reimers JM, Wright BE (2006) The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol Microbiol 60:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Shapiro GS, Aviszus K, Murphy J, Wysocki LJ (2002) Evolution of Ig DNA sequence to target specific base positions within codons for somatic hypermutation. J Immunol 168:2302–2306

    PubMed  CAS  Google Scholar 

  • Shapiro GS, Ellison MC, Wysocki LJ (2003) Sequence-specific targeting of two bases on both DNA strands by the somatic hypermutation mechanism. Mol Immunol 40:287–295

    Article  PubMed  CAS  Google Scholar 

  • Shen HM, Storb U (2004) Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. Proc Natl Acad Sci U S A 101:12997–13002

    Article  PubMed  CAS  Google Scholar 

  • Shen HM, Ratnam S, Storb U (2005) Targeting of the activation-induced cytosine deaminase is strongly influenced by the sequence and structure of the targeted DNA. Mol Cell Biol 25:10815–10821

    Article  PubMed  CAS  Google Scholar 

  • Sohail A, Klapacz J, Samaranayake M, Ullah A, Bhagwat AS (2003) Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res 31:2990–2994

    Article  PubMed  CAS  Google Scholar 

  • Staudt LM, Lenardo MJ (1991) Immunoglobulin gene transcription. Annu Rev Immunol 9:373–398

    Article  PubMed  CAS  Google Scholar 

  • Storb U, Peters A, Kim N, Shen HM, Bozek G, Michael N, Hackett J, Klotz E, Loeb L, Martin T (1999) Molecular aspects of somatic hypermutation of Ig genes. Cold Spring Harbor Lab Symp Quant Biol 64:227–234

    Article  CAS  Google Scholar 

  • Suo Z, Johnson KA (1998) DNA secondary structure effects on DNA synthesis catalyzed by HIV-1 reverse transcriptase. J Biol Chem 273:27259–27267

    Article  PubMed  CAS  Google Scholar 

  • Wadkins RM (2000) Targeting DNA secondary structures. Curr Med Chem 7:1–15

    PubMed  CAS  Google Scholar 

  • Wright BE (2000) A biochemical mechanism for nonrandom mutations and evolution. J Bacteriol 182:2993–3001

    Article  PubMed  CAS  Google Scholar 

  • Wright BE (2004) Stress-directed adaptive mutations and evolution. Mol Microbiol 52:643–650

    Article  PubMed  CAS  Google Scholar 

  • Wright BE, Reschke DK, Schmidt KH, Reimers JM, Knight W (2003) Predicting mutation frequencies in stem-loop structures of derepressed genes: implications for evolution. Mol Microbiol 48:429–441

    Article  PubMed  CAS  Google Scholar 

  • Wright BE, Schmidt KH, Minnick MF (2004) Mechanisms by which transcription can regulate somatic hypermutation. Genes Immun 5:176–182

    Article  PubMed  CAS  Google Scholar 

  • Wright BE, Schmidt KH, Davis N, Hunt AT, Minnick MF (2008a) II. Correlations between secondary structure stability and mutation frequency during somatic hypermutation. Mol Immunol 45:3600–3608

    Article  PubMed  CAS  Google Scholar 

  • Wright BE, Schmidt KH, Minnick MF, Davis N (2008b) I VH gene transcription creates stabilized secondary structures for coordinated mutagenesis during somatic hypermutation. Mol Immunol 45:3589–3599

    Article  PubMed  CAS  Google Scholar 

  • Wright BE, Schmidt KH, Hunt AT, Reschke DK, Minnick MF (2011) Evolution of coordinated mutagenesis and somatic hypermutation in VH5. Mol Immunol 49:537–548

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K, Okazaki IM, Eto T, Kinoshita K, Muramatsu M, Nagaoka H, Honjo T (2002) AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296:2033–2036

    Article  PubMed  CAS  Google Scholar 

  • Yu K, Huang FT, Lieber MR (2004) DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J Biol Chem 279:6496–6500

    Article  PubMed  CAS  Google Scholar 

  • Zheng GX, Kochel T, Hoepfner RW, Timmons SE, Sinden RR (1991) Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells. J Mol Biol 221:107–122

    Article  PubMed  CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

BD is supported by the Ontario Graduate Scholarship and The President Susan Mann Dissertation Scholarship. GEW is funded by The Arthritis Society. JW is funded by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs program (CRC) and by Mprime. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhargavi Duvvuri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Structural state of bases C’s sand G’s by folding NTS and TS strands of germline IGHV3-23 gene sequence in ‘mfold’a (DOC 37 kb)

Table S2

Comparison of C’s in hot spots (WRC) on NTS and TS (DOC 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duvvuri, B., Duvvuri, V.R., Wu, J. et al. Stabilised DNA secondary structures with increasing transcription localise hypermutable bases for somatic hypermutation in IGHV3-23. Immunogenetics 64, 481–496 (2012). https://doi.org/10.1007/s00251-012-0607-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-012-0607-3

Keywords

Navigation