Skip to main content
Log in

A kinked antimicrobial peptide from Bombina maxima. I. Three-dimensional structure determined by NMR in membrane-mimicking environments

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Maximin-4 is a 27-residue cationic antimicrobial peptide exhibiting selectivity for bacterial cells. As part of the innate defense system in the Chinese red-belly toad, its mode of action is thought to be ion channel or pore formation and dissipation of the electrochemical gradient across the pathogenic cell membrane. Here we present the high-resolution structure of maximin-4 in two different membrane mimetics, sodium dodecyl sulfate micelles and 50% methanol, as determined by 1H solution NMR spectroscopy. In both environments, the peptide chain adopts a helix–break–helix conformation following a highly disordered N-terminal segment. Despite the similarities in the overall topology of the two structures, major differences are observed in terms of the interactions stabilizing the kink region and the arrangement of the four lysine residues. This has a marked influence on the shape and charge distribution of the molecule and may have implications for the bacterial selectivity of the peptide. The solution NMR results are complemented by CD spectroscopy and solid-state NMR experiments in lipid bilayers, both confirming the predominantly helical conformation of the peptide. As a first step in elucidating the membrane interactions of maximin-4, our study contributes to a better understanding of the mode of action of antimicrobial peptides and the factors governing their selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AMP:

Antimicrobial peptide

MBHA:

4-Methylbenzhydrylamine

DMF:

Dimethylformamide

DCM:

Dichloromethane

DCC:

N,N′-dicyclohexylcarbodiimide

HOBt:

1-Hidroxybenzotriazole

TFA:

Trifluoroacetic acid

EDTA:

Ethylenediamine tetraacetic acid

PIPES:

Piperazine-N-N′-bis(2-ethanesulfonic acid)

SDS:

Sodium dodecyl sulfate

DPC:

Dodecylphosphocholine

DPPC:

Dipalmitoylphosphatidylcholine

DPPG:

Dipalmytoylphosphatidylglycerol

DMPC:

Dimyristoylphosphatidylcholine

DMPG:

Dimyristoylphosphatidylglycerol

MLV:

Multilamellar vesicle

HPLC:

High-pressure liquid chromatography

NMR:

Nuclear magnetic resonance

TOCSY:

Total correlation spectroscopy

NOESY:

Nuclear Overhauser effect spectroscopy

HSQC:

Heteronuclear single quantum correlation

ARIA:

Ambiguous restraints for iterative assignment

RMSD:

Root mean square deviation

MAS:

Magic-angle spinning

REDOR:

Rotational-echo double resonance

CD:

Circular dichroism

References

  • Andres E, Dimarcq JL (2005) Clinical development of antimicrobial peptides. Int J Antimicrob Agents 25:448–452

    Article  PubMed  CAS  Google Scholar 

  • Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolymers 47:415–433

    Article  PubMed  CAS  Google Scholar 

  • Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659

    Article  CAS  Google Scholar 

  • Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17:75–86

    Article  PubMed  CAS  Google Scholar 

  • Bax A, Davis DG (1985) MLEV-17 based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360

    CAS  Google Scholar 

  • Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215

    Article  PubMed  CAS  Google Scholar 

  • Brasseur R (1991) Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. J Biol Chem 266:16120–16127

    PubMed  CAS  Google Scholar 

  • Chi SW, Kim JS, Kim DH, Lee SH, Park YH, Han KH (2007) Solution structure and membrane interaction mode of an antimicrobial peptide gaegurin 4. Biochem Biophys Res Commun 352:592–597

    Article  PubMed  CAS  Google Scholar 

  • Ciornei CD, Sigurdardóttir T, Schmidtchen A, Bodelsson M (2005) Antimicrobial and chemoattractant activity, lipopolysaccharide neutralization, cytotoxicity, and inhibition by serum of analogs of human cathelicidin LL-37. Antimicrob Agents Chemother 49:2845–2850

    Article  PubMed  CAS  Google Scholar 

  • Crowe JH, Crowe LM (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–704

    Article  PubMed  CAS  Google Scholar 

  • da Silva A Jr, Teschke O (2003) Effects of the antimicrobial peptide PGLa on live Escherichia coli. Biochim Biophys Acta 1643:95–103

    Article  PubMed  CAS  Google Scholar 

  • Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462:71–87

    Article  PubMed  CAS  Google Scholar 

  • Dathe M, Schümann M, Wieprecht T, Winkler A, Beyermann M, Krause E, Matsuzaki K, Murase O, Bienert M (1996) Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Biochemistry 35:12612–12622

    Article  PubMed  CAS  Google Scholar 

  • Drawz SM, Bonomo RA (2010) Three decades of beta-lactamase inhibitors. Clin Microbiol Rev 23:160–201

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299:371–374

    Article  PubMed  CAS  Google Scholar 

  • English BK, Gaur AH (2010) The use and abuse of antibiotics and the development of antibiotic resistance. Adv Exp Med Biol 659:73–82

    Article  PubMed  Google Scholar 

  • Epand RM, Vogel HJ (1999) Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta 1462:11–28

    Article  PubMed  CAS  Google Scholar 

  • Epand RM, Shai Y, Segrest JP, Anantharamaiah GM (1995) Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers 37:319–338

    Article  PubMed  CAS  Google Scholar 

  • Ge M, Chen Z, Onishi HR, Kohler J, Silver LL, Kerns R, Fukuzawa S, Thompson C, Kahne D (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284:507–511

    Article  PubMed  CAS  Google Scholar 

  • Gibson BW, Tang D, Mandrell R, Kelly M, Spindel ER (1991) Bombinin-like peptides with antimicrobial activity from skin secretions of the Asian toad, Bombina orientalis. J Biol Chem 266:23103–23111

    PubMed  CAS  Google Scholar 

  • Gullion T, Schaefer J (1989a) Rotational echo double-resonance NMR. J Magn Reson 81:196–200

    CAS  Google Scholar 

  • Gullion T, Schaefer J (1989b) Detection of weak heteronuclear dipolar coupling by rotational echo double-resonance. Adv Magn Res 13:57–83

    Google Scholar 

  • Habeck M, Rieping W, Linge JP, Nilges M (2004) NOE assignment with ARIA 2.0. Methods Mol Biol 278. In: Downing AK (ed) Protein NMR techniques. Humana Press, Inc., Totowa

  • Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422

    Google Scholar 

  • Hancock REW, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defenses. Trends Microbiol 8:402–410

    Article  PubMed  CAS  Google Scholar 

  • Harris F, Dennison SR, Phoenix DA (2009) Anionic antimicrobial peptides from eukaryotic organisms. Curr Protein Pept Sci 10:585–606

    Article  PubMed  CAS  Google Scholar 

  • Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053

    Article  CAS  Google Scholar 

  • Heinzmann R, Grage SL, Schalck C, Bürck J, Bánóczi Z, Toke O, Ulrich AS (2010) A kinked antimicrobial peptide from Bombina maxima. II. Behavior in phospholipid bilayers. doi:s00249-011-0668-x

  • Janin J (1979) Surface and inside volumes in globular proteins. Nature 277:491–492

    Article  PubMed  CAS  Google Scholar 

  • John BK, Plant D, Webb P, Hurd RE (1992) Effective combination of gradients and crafted RF pulses for water suppression in biological samples. J Magn Reson 95:200–206

    Google Scholar 

  • Kaatz GW (2005) Bacterial efflux pump inhibition. Curr Opin Investig Drugs 6:191–198

    PubMed  CAS  Google Scholar 

  • Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test of detection of free amino groups in the solid phase synthesis of peptides. Anal Biochem 34:595–598

    Article  PubMed  CAS  Google Scholar 

  • Koradi R, Billeter M, Küthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  PubMed  CAS  Google Scholar 

  • Kricheldorf HR, Müller D (1983) Secondary structure of peptides. 3. Carbon-13 NMR cross polarization/magic angle spinning spectroscopy characterization of solid polypeptides. Macromolecules 16:615–623

    Article  CAS  Google Scholar 

  • Kumar A, Ernst RR, Wüthrich K (1980) A two-dimensional nuclear Overhauser enhancement (2D NOESY) experiment for the elucidation of complete proton-proton cross relaxation networks in biological macromolecules. Biochem Biophys Res Commun 95:1–6

    Article  PubMed  CAS  Google Scholar 

  • Kuntz ID, Kosen PA, Craig EC (1991) Amide chemical shifts in many helices in peptides and proteins are periodic. J Am Chem Soc 113:1406–1408

    Article  CAS  Google Scholar 

  • Lai R, Liu H, Hui Lee W, Zhang Y (2002a) An anionic antimicrobial peptide from toad Bombina maxima. Biochem Biophys Res Commun 295:796–799

    Article  PubMed  CAS  Google Scholar 

  • Lai R, Zheng YT, Shen JH, Liu GJ, Liu H, Lee WH, Tang SZ, Zhang Y (2002b) Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides 23:427–435

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Chrystallogr 26:283–291

    Article  CAS  Google Scholar 

  • Laskowski RA, Rullmann JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  PubMed  CAS  Google Scholar 

  • Lee MT, Chen FY, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43:3590–3599

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Walsh CT (2004) A chemoenzymatic approach to glycopeptide antibiotics. J Am Chem Soc 126:13998–14003

    Article  PubMed  CAS  Google Scholar 

  • Linge JP, O’Donoghue SI, Nilges M (2001) Automated assignment of ambiguous nuclear overhauser effects with ARIA. Methods Enzymol 339:71–90

    Article  PubMed  CAS  Google Scholar 

  • Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287

    Article  CAS  Google Scholar 

  • Ludtke SJ, He K, Huang HW (1995) Membrane thinning caused by magainin. Biochemistry 34:16764–16769

    Article  PubMed  CAS  Google Scholar 

  • Mangoni ML, Papo N, Barra D, Simmaco M, Bozzi A, Di Giulio A, Rinaldi AC (2004) Effects of the antimicrobial peptide temporin L on cell morphology, membrane permeability and viability of Escherichia coli. Biochem J 380:859–865

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki K (1999) Why and how are peptide-lipid intereactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462:1–10

    Article  PubMed  CAS  Google Scholar 

  • Merutka G, Dyson HJ, Wright PE (1995) ‘Random-coil’ 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for peptide series GGXGG. J Biomol NMR 5:14–24

    Article  PubMed  CAS  Google Scholar 

  • Nicolas P, Mor A (1995) Peptides as weapons against microorganisms in the chemical defense system of vertebrates. Ann Rev Microbiol 49:277–304

    Article  CAS  Google Scholar 

  • Nilges M, Macias MJ, O’Donoghue SI, Oschkinat HJ (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. Mol Biol 269:408–422

    Article  CAS  Google Scholar 

  • Oh D, Shin SY, Lee S, Kang JH, Kim SD, Ryu PD, Hahm KS, Kim Y (2000) Role of the hinge region and the tryptophan residue in the synthetic antimicrobial peptides, cecropin A(1-8)-magainin 2(1-12) and its analogues, on their antibiotic activities and structures. Biochemistry 39:11855–11864

    Article  PubMed  CAS  Google Scholar 

  • Oren Z, Ramesh J, Avrahami D, Suryaprakash N, Shai Y, Jelinek R (2002) Structures and mode of membrane interaction of a short α helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Eur J Biochem 269:3869–3880

    Article  PubMed  CAS  Google Scholar 

  • Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Comm 244:253–257

    Article  PubMed  CAS  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  PubMed  CAS  Google Scholar 

  • Porcelli F, Buck B, Lee D-K, Hallock KJ, Ramamoorthy A, Veglia G (2004) Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem 279:45815–45823

    Article  PubMed  CAS  Google Scholar 

  • Porcelli F, Verardi R, Shi L, Henzler-Wildman KA, Ramamoorthy A, Veglia G (2008) NMR structure of the cathelicidin-derived human antimicrobial peptide LL-37 in dodecylphosphocholine micelles. Biochemistry 47:5565–5572

    Article  PubMed  CAS  Google Scholar 

  • Pukala TL, Brinkworth CS, Carver JA, Bowie JH (2004) Investigating the importance of the flexible hinge in caerin 1.1: solution structures and activity of two synthetically modified caerin peptides. Biochemistry 43:937–944

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C, Wilkinson SG (eds) (1998) Microbial Lipids, vol 1. Academic, London

  • Rudolph AS, Crowe JJ (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367–377

    Article  PubMed  CAS  Google Scholar 

  • Saito H (1986) Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state 13C NMR. Magn Res Chem 24:835–852

    Article  CAS  Google Scholar 

  • Segrest JP, de Loof H, Dohlman JG, Brouillettem CG, Anantharamaiah GM (1990) Amphipathic helix motif: classes and properties. Proteins 8:103–117

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (1999) Mechanisms of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    Article  PubMed  CAS  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  PubMed  CAS  Google Scholar 

  • Shaka AJ, Lee CJ, Pines A (1988) Iterative schemes for bilinear operators: application to spin decoupling. J Magn Reson 77:274–293

    Google Scholar 

  • Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738

    Article  PubMed  CAS  Google Scholar 

  • Simmaco M, Barra D, Chiarini F, Noviello L, Melchiorri P, Kreil G, Richter K (1991) A family of bombinin-related peptides from the skin of Bombina variegate. Eur J Biochem 199:217–222

    Article  PubMed  CAS  Google Scholar 

  • Sinha N, Grant CV, Wu CH, De Angelis AA, Howell SC, Opella SJ (2005) SPINAL modulated decoupling in high field double- and triple-resonance solid-state NMR experiments on stationary samples. J Magn Reson 177:197–202

    Article  PubMed  CAS  Google Scholar 

  • Toke O (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80:717–735

    Article  PubMed  CAS  Google Scholar 

  • Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 55:4–30

    Article  PubMed  CAS  Google Scholar 

  • Tytler EM, Segrest JP, Epand EM, Nie SQ, Epand RF, Mishra VK, Venkatachalapathi YV, Anantharamaiah GM (1993) Reciprocal effects of apolipoprotein and lytic peptide analogs on membranes. Cross-sectional molecular shapes of amphipathic alpha helixes control membrane stability. J Biol Chem 268:22112–22118

    PubMed  CAS  Google Scholar 

  • Ulvatne H, Samuelsen O, Haukland HH, Kramer M, Vorland LH (2004) Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 237:377–384

    PubMed  CAS  Google Scholar 

  • Van’t Hof W, Veerman ECI, Helmerhorst EJ, Amerongenm AVN (2001) Antimicrobial peptides: properties and applicability. Biol Chem 382:597–619

    Article  Google Scholar 

  • Verkleij AJ, Zwaal FA, Roelofsen B, Comfurius P, Kastelijn D, van Deenen LL (1973) The asymmetric distribution of phospholipids in the human red cell membrane. A combined study using phospholipases and freeze-etch electron microscopy. Biochim Biophys Acta 323:178–193

    Article  PubMed  CAS  Google Scholar 

  • Wagner G, Pardi A, Wüthrich K (1983) Hydrogen bond length and 1H NMR chemical shifts in proteins. J Am Chem Soc 105:5948–5949

    Article  CAS  Google Scholar 

  • Walsh CT (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781

    Article  PubMed  CAS  Google Scholar 

  • Wieprecht T, Dathe M, Epand RM, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M (1997) Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry 36:12869–12880

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Maier E, Benz R, Hancock REW (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–7242

    Article  PubMed  CAS  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  • Xiao Y, Herrera AI, Bommineni YR, Soulages JL, Prakash O, Zhang G (2009) The central kink region of fowlicidin-2, an α-helical host defense peptide, is critically involved in bacterial killing and endotoxin neutralization. J Innate Immun 1:268–280

    Article  PubMed  CAS  Google Scholar 

  • Zhou NE, Zhou B-Y, Sykes BD, Hodges RS (1992) Relationship between amide proton chemical shifts and hydrogen bonding in amphipathic α-helical peptides. J Am Chem Soc 114:4320–4326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gábor Mező for helpful discussions on peptide synthesis. O.T. thanks Dr. Stephan Grage (Karlsruhe Institute of Technology) for helpful discussions on the manuscript. Z.B. is grateful for the support of the Bolyai János Fellowship program of the Hungarian Academy of Sciences. This work was supported by grants from the Hungarian Research Fund (OTKA) F68326 and the Hungarian GVOP-3.2.1.-2004-04-0210/3.0 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orsolya Toke.

Additional information

Membrane-active peptides: 455th WE-Heraeus-Seminar and AMP 2010 Workshop.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toke, O., Bánóczi, Z., Király, P. et al. A kinked antimicrobial peptide from Bombina maxima. I. Three-dimensional structure determined by NMR in membrane-mimicking environments. Eur Biophys J 40, 447–462 (2011). https://doi.org/10.1007/s00249-010-0657-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0657-0

Keywords

Navigation