Skip to main content
Log in

Characterization of polysaccharide hydrogels for modified drug delivery

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Hydrogels are hydrophilic macromolecular networks that are capable of retaining a large amount of water. A precise description of these systems is actually quite complex and the practical use of hydrogels for drug delivery and biomedical applications is often not supported by a well-defined knowledge of the overall structure of the polymeric network. In this paper, we report the characterization of two different systems: a chemical network based on Guar Gum (GG) and a physical gel prepared with Xanthan (Xanth) and Locust Bean Gum (LBG). The dynamo-mechanical properties of the gels were analysed: the cohesiveness and the adhesion of the networks were strongly dependent on time, temperature, and composition. The kinetics of the chemical crosslinking was followed by means of rheological measurements, i.e. recording the mechanical spectra of the gelling system, and the power law exponent at the gel point was evaluated. Furthermore, the networks, loaded with model drugs with different steric hindrance, were used as matrices for tablets and the rate of release of such model drugs was studied. The diffusion of the guest molecules was deeply dependent on their dimensions; in the case of Xanth–LBG tablets the release profiles were almost independent from the different cohesion properties of the starting hydrogel composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam M, Lairez D (1996) “Sol-Gel transition.” In: Cohen Addad JP (ed) Physical properties of polymeric gels. Wiley, Chichester, p 87

    Google Scholar 

  • Alexander S, Grest GS, Nakanishi H, Witten TA Jr (1984) Branched polymer approach to the structure of lattice animals and percolation clusters. J Phys A Math gen 17:L185–L190

    Article  ADS  Google Scholar 

  • Alves MM, Antov YA, Goncalves MP (2000) Phase equilibria and mechanical properties of gel-like water–gelatin–locust bean gum systems. Int J Biol Macromol 27:41–47

    Article  Google Scholar 

  • Bresolin TMB, Sander PC, Reicher F, Sierakowski MR, Rinaudo M, Ganter JLMS (1997) Viscometric studies on xanthan and galactomannan systems composition. Carbohydr Polym 33:131–138

    Article  Google Scholar 

  • Bresolin TMB, Milas M, Rinaudo M, Reicher F, Ganter JLMS (1999) Role of galactomannan composition on the binary gel formation with xanthan. Int J Biol Macromol 26:225–231

    Article  Google Scholar 

  • Chambon F, Winter HH (1985) Stopping of crosslinking reaction in a PDMS polymer at the gel point. Polym Bull 13:499–503

    Article  Google Scholar 

  • Copetti G, Grassi M, Lapasin R, Pricl S (1997) Synergistic gelation of xanthan gum with locust bean gum: a rheological investigation. Glycoconj J 14:951–961

    Article  Google Scholar 

  • Coviello T, Burchard W (1992) Criteria for the point of gelation in reversibly gelling systems according to dynamic light scattering and oscillatory rheology. Macromolecules 25:1011–1012

    Article  Google Scholar 

  • Coviello T, Alhaique F, Dorigo A, Matricardi P, Grassi M (2006) Two galactomannans and scleroglucan as matrices for drug delivery: preparation and release studies. Eur J Pharm Biopharm doi:10.1016/j.ejpb.2006.10.024

  • de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca, pp 137–152

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Gliko-Kabir I, Yagen B, Penasi A, Rubinstein A (1998) Low swelling, crosslinked guar and its potential use as colon-specific drug carrier. Pharm Res 15:1019–1025

    Article  Google Scholar 

  • Grisel M, Muller G (1998) Rheological properties of the schizophyllan-borax system. Macromolecules 31:4277–4281

    Article  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12

    Article  Google Scholar 

  • Hsu SH, Jamieson M (1993) Viscoelastic behaviour at the thermal sol-gel transition of gelatin. Polymer 34:2602–2608

    Article  Google Scholar 

  • Izuka A, Winter H, Hashimoto (1992) Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules 25:2422–2428

    Article  Google Scholar 

  • Jones DS, Woolfson AD, Djokic J (1996) Texture profile analysis of bioadhesive polymeric semisolids: mechanical characterization and investigation of interactions between formulation components. J Appl Polym Sci 61:2229–2234

    Article  Google Scholar 

  • Kawara J, Ohmori T, Ohkubo T, Hattori S, Kawamura A (1992) The structure of glutaraldehyde in aqueous solution determined by ultraviolet absorption and light scattering. Anal Biochem 201:94–98

    Article  Google Scholar 

  • Kok MS, Hill SE, Mitchell JR (1999) Viscosity of galactomannans during high temperature processing: influence of degradation and solubilisation. Food Hydrocolloids 13:535–542

    Article  Google Scholar 

  • Korn AH, Peairheller EM, Filachione EM (1972) Glutaraldehyde: nature of the reagent. J Mol Biol 65:525–529

    Article  Google Scholar 

  • Lapasin R, Pricl S (1995a) Rheology of industrial polysaccharides: theory and applications. Blackie Academic & Professional, London, pp 162–578

    Google Scholar 

  • Lapasin R, Pricl S (1995b) Rheology of industrial polysaccharides. Blackie Academic & Professional/Chapman & Hall, London/New York, p 399, p 402

  • Liu CA, Craig DQM, Hampson FC, Dettmar PW (1998) An investigation into the rheological synergy between xanthan gum-locust bean gum mixtures. J Pharm Pharmacol 50(Suppl):149

    Google Scholar 

  • Lundin L, Hermansson AM (1995) Supermolecular aspects of xanthan-locust bean gum gels based on rheology and electron microscopy. Carbohydr Polym 26:129–140

    Article  Google Scholar 

  • Mao CF, Rwei SP (2006) Cascade analysis of mixed gels of xanthan and locust bean gum. Polymer 47:7980–7987

    Article  Google Scholar 

  • Martin JE, Adolf D (1991) The sol-gel transition in chemical gels. Ann Rev Phys Chem 42:311–339

    Article  Google Scholar 

  • Matricardi P, Dentini M, Crescenzi V (1993) Rheological gel-point determination for a polysaccharide system undergoing chemical cross-linking. Macromolecules 26:4386–4387

    Article  Google Scholar 

  • Michon C, Cuvelier G, Launay B, Parker A (1995) In: Dickinson E (ed) Food macromolecules and colloids. The Royal Society of Chemistry, London

    Google Scholar 

  • Ojinnaka C, Brownsey GJ, Morris ER, Morris VJ (1998) Effect of deacetylation on the synergistic interaction of acetan with locust bean gum or konjac mannan. Carbohydr Res 305:101–108

    Article  Google Scholar 

  • Palleschi A, Coviello T, Bocchinfuso G, Alhaique F (2006) Investigation on a new scleroglucan/borax hydrogel: structure and drug release. Int J Pharm 322:13–21

    Article  Google Scholar 

  • Richter S, Boyko V, Schröter K (2004a) Gelation studies on a radical chain cross-linking copolymerization process: comparison of the critical exponents obtained by dynamic light scattering and rheology. Macromol Rapid Commun 25:542–546

    Article  Google Scholar 

  • Richter S, Boyko V, Schröter K (2004b) Gelation studies: comparison of the critical exponents obtained by dynamic light scattering and rheology, 2a. A thermoreversible gelling system: mixtures of xanthan gum and locust bean gum. Macromol Rapid Commun 25:1504–1509

    Article  Google Scholar 

  • Richter S, Brand T, Berger S (2005) Gelation studies, 3 comparative monitoring of the gelation process of a thermoreversible gelling system made of xanthan gum and locust bean gum by dynamic light scattering and 1H NMR spectroscopy. Macromol Rapid Commun 26:548–553

    Article  Google Scholar 

  • Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. Adv Polym Sci 44:105–158

    Google Scholar 

  • Tamburic S, Craig DQM (1997) A comparison of different in vitro methods for measuring mucoadhesive performance. Eur J Pharm Biopharm 44:159–167

    Article  Google Scholar 

  • Tamburic S, Craig DQM, Vuleta G, Milic J (1996) An investigation into the use of thermorheology and texture analysis in the evaluation of W/O cream stabilised with a silicone emulsifier. Pharm Dev Technol 1:299–306

    Google Scholar 

  • Wang E, Wang YJ, Sun Z (2002) Conformational role of xanthan in its interaction with locust bean gum. J Food Sci 67:2609–2614

    Article  Google Scholar 

  • Whipple E, Buta M (1974) Structure of aqueous glutaraldehyde. J Org Chem 39:1666–1668

    Article  Google Scholar 

  • Winter HH, Izuka A, De Rosa ME (1994) Experimental observation of the molecular weight dependence of the critical exponents for the rheology near the gel point. Polym Gels Networks 2:239–245

    Article  Google Scholar 

Download references

Acknowledgement

This work was carried out with the financial support of MIUR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Coviello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandolo, C., Coviello, T., Matricardi, P. et al. Characterization of polysaccharide hydrogels for modified drug delivery. Eur Biophys J 36, 693–700 (2007). https://doi.org/10.1007/s00249-007-0158-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0158-y

Keywords

Navigation