Skip to main content

Advertisement

Log in

Acetyl-[Asn30,Tyr32]-calcitonin fragment 8-32 forms channels in phospholipid planar lipid membranes

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The N-terminally truncated derivative of salmon calcitonin (sCt) (acetyl-[Asn30,Tyr32]-calcitonin fragment 8-32) (AC 187) lacks hormonal activity and is a potent and selective antagonist of the hormone and amylin receptor. It was investigated for its capability to interact and form channels in palmitoleoylphosphatidylcholine:dioleoylphosphatidylglycerol planar lipid membranes. Interestingly, AC 187 exhibits channel activity, whose parameters, i.e., central conductance (Λ c), occurrence (number of channels/min), voltage-dependence and lifetime, are similar to those found for sCt although, in the same experimental conditions, it takes longer to incorporate into the membrane than sCt. This channel activity can be modulated by changing either the holding potential or the pH of the medium, or by adding picomolar concentrations of SDS. One evident difference between the two peptides is that sCt is unselective (1.03) while AC 187 displays a cationic selectivity (P K +/P Cl  = 2.7) at pH 7, increasing to 3.87 when the pH drops to 3.8. The present findings indicate that the 1-7 disulfide bridge is sufficient but not necessary for membrane interaction, in accordance with the observation reported on the interaction with membrane receptors. Furthermore, the remarkable pH dependence of the cationic channel could be taken into consideration for full biotechnological study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amodeo P, Motta A, Straziullo G, Castiglione Morelli MA (1999) Conformational flexibility in calcitonin: the dynamic properties of human and salmon calcitonin in solution. J Biomol NMR 13:161–174

    Article  Google Scholar 

  • Azria M (1989) The calcitonins: physiology and pharmacology. Karger, Basel

    Google Scholar 

  • Beaumont K, Moore CX, Pittner RA, Prickett KS, Gaeta LS, Rink TJ, Young AA (1995a) Differential antagonism of amylin’s metabolic and vascular actions with amylin receptor antagonists. Can J Physiol Pharmacol 73:1025–1029

    Google Scholar 

  • Beaumont K, Pittner RA, Moore CX, Wolfe-Lopez D, Prickett KS, Young AA, Rink TJ (1995b) Regulation of muscle glycogen metabolism by CGRP and amylin: CGRP receptors not involved. Br J Pharmacol 115:713–715

    Google Scholar 

  • Boichot S, Krauss U, Plenat T, Rennert R, Milhiet PE, Beck-Sickinger A, Le Grimellec C (2004) Calcitonin-derived carrier peptide plays a major role in the membrane localization of a peptide-cargo complex. FEBS Lett 569:346–350

    Article  Google Scholar 

  • Bradshaw JP (1997) Phosphatidylglycerol promotes bilayer insertion of salmon calcitonin. Biophys J 72:2180–86

    Google Scholar 

  • Chambers TJ, Magnus CJ (1982) Calcitonin alters behaviour of isolated osteoclasts. J Pathol 136:27–39

    Article  Google Scholar 

  • Cudd A, Arvinte T, Das RE, Chinni C, McIntyre I (1995) Enhanced potency of human calcitonin when fibrillation is avoided. J Pharm Sci 84:717–719

    Article  Google Scholar 

  • Davies SMA, Kelly SM, Price NC, Bradshaw JP (1998) Structural plasticity of the feline leukaemia virus fusion peptide: a circular dichroism study. FEBS Lett 425:415–418

    Article  Google Scholar 

  • Deber CM, Li S-C (1995) Peptides in membranes: helicity and hydrophobicity. Biopolymers 37:295–318

    Article  Google Scholar 

  • Diociaiuti M, Zanetti Polsi L, Valvo L, Malchiodi-Alfedi F, Bombelli C, Gaudiano MC (2006) Calcitonin forms oligomeric pore-like structures in lipid membranes. Biophys J 91:2275–2281

    Article  Google Scholar 

  • Disa J, Dang K, Tan KB, Aiyar N (1998) Interaction of adrenomedullin with calcitonin receptor in cultured human breast cancer cells, T 47D. Peptides 19:247–251

    Article  Google Scholar 

  • Gallucci E, Meleleo D, Micelli S, Picciarelli V (2003) Magainin2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol. Eur Biophys J 32:22–32

    Google Scholar 

  • Harris PJ, Cooper ME, Hiranyachattada S, Bera JL, Kelly DJ, Nobes M, Wookey PJ (1997) Amylin stimulates proximal tubular sodium transport and cell proliferation in the rat kidney. Am J Physiol 272:F13–F21

    Google Scholar 

  • Herbig ME, Weller K, Krauss U, Beck-Sickinger AG, Merkle HP, Zerbe O (2005) Membrane surface-associated helices promote lipid interactions and cellular uptake of human calcitonin-derived cell penetrating peptides. Biophys J 89:4056–4066

    Article  Google Scholar 

  • Hilton JM, Dowton M, Houssami S, Sexton PM (2000) Identification of key components in the irreversibility of salmon calcitonin binding to calcitonin receptors. J Endocrinol 166:213–226

    Article  Google Scholar 

  • Kaneez FS, White M (2004) Patch clamp study of Serotonin-gated currents via 5-HT type 3 receptors by using a novel approach SHAM for receptor channel scanning. J Biomed Biotechnol 2004:10–15

    Article  Google Scholar 

  • Kapurniato A, Taylor JW (1995) Structural and conformational requirements for human calcitonin activity: design synthesis, and study of lactam-bridged analogues. J Med Chem 38:836–847

    Article  Google Scholar 

  • Krauss U, Kratz F, Beck-Sickinger AG (2003) Novel daurobicin-carrier peptide conjugates derived from human calcitonin segments. J Mol Recognit 16:280–287

    Article  Google Scholar 

  • Krauss U, Muller M, Stahl M, Beck-Sickinger AG (2004) In vitro gene delivery by a novel human calcitonin (hCT)-derived carrier peptide. Bioorg Med Chem Lett 14:51–54

    Article  Google Scholar 

  • Lutz TA, Tschudya S, Rushing PA, Scharrera E (2000) Amylin receptors mediate the anorectic action of salmon calcitonin (sCT). Peptides 21:233–238

    Article  Google Scholar 

  • Machova Z, Muhle C, Krauss U, Trehin R, Koch A, Merkle HP, Beck-Sickinger AG (2002) Cellular internalization of enhanced green fluorescent protein ligated to a human calcitonin-based carrier peptide. Chembiochem 3:672–677

    Article  Google Scholar 

  • MacIntyre I, Parsons LA, Robinson CJ (1967) The effect of thyrocalcitonin on blood bone calcium equilibrium in the perfused tibiae of the cat. J Physiol 191:393–405

    Google Scholar 

  • MacIntyre I, Stevenson JC, Whitehead MI, Wimalawansa SJ, Banks LM, Healy MJ (1988) Calcitonin for prevention of postmenopausal bone loss. Lancet 8591:900–902

    Article  Google Scholar 

  • Meleleo D, Micelli S, Toma K, Haneda K, Gallucci E (2006) Effect of eel calcitonin glycosylation on incorporation and channel formation in planar phospholipid membranes. Peptides 27:805–811

    Article  Google Scholar 

  • Micelli S, Meleleo D, Picciarelli V, Stoico MG, Gallucci E (2004) Effect of nanomolar concentrations of sodium dodecyl sulfate—a catalytic inductor of α-helices on human calcitonin incorporation and channel formation in planar lipid membranes. Biophys J 87:1065–1075

    Article  Google Scholar 

  • Micelli S, Meleleo D, Picciarelli V, Gallucci E (2006) Effect of pH-variation on insertion and ion channel formation of human calcitonin into planar lipid bilayers. Front Biosci 11:2035–2044

    Article  Google Scholar 

  • Nicholson GC, Moseley JM, Sexton PM, Mendelsohn FA, Martin TJ (1986) Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J Clin Invest 78:355–360

    Article  Google Scholar 

  • Pham V, Dong M, Wade JD, Miller IJ, Morton CJ, Ng HL, Parker MW, Sexton PM (2005) Insights into interactions between the alpha-helical region of the salmon calcitonin antagonists and the human calcitonin receptor using photoaffinity labeling. J Biol Chem 280:28610–28622

    Article  Google Scholar 

  • Pozvek G, Hilton JM, Quiza M, Houssami S, Sexton PM (1997) Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system. Mol Pharmacol 51:658–665

    Google Scholar 

  • Sargent DF, Schwyzer R (1986) Membrane lipid phase as catalyst for peptide-receptor interactions. Proc Natl Acad Sci USA 83:5774–5778

    Article  ADS  Google Scholar 

  • Schmidt MC, Rothen-Rutishauser B, Rist B, Beck-Sickinger AG, Wunderly-Allenspach H, Rubas Sadée W, Merkle HP (1998) Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membranes. Biochemistry 37:16582–16590

    Article  Google Scholar 

  • Silverman SL (1997) Calcitonin. Am J Med Sci 313:13–16

    Article  Google Scholar 

  • Silvestre RA, Salas M, Rodriguez-Gallardo J, Garcia-Hermida O, Fontela T, Marco J (1996) Effect of (8-32) salmon calcitonin, an amylin antagonist, on insulin, glucagon and somatostatin release: study in the perfused pancreas of the rat. Br J Pharmacol 117:347–350

    Google Scholar 

  • Stipani V, Gallucci E, Micelli S, Picciarelli V, Benz R (2001) Channel formation by salmon and human calcitonin in black lipid membranes. Biophys J 81:3332–3338

    Article  Google Scholar 

  • Stroop SD, Nakamuta H, Kuestner RE, Moore EE, Epand RM (1996) Determinants for calcitonin analog interaction with the calcitonin receptor N-terminus and transmembrane-loop regions. Endocrinology 137:4752–6475

    Article  Google Scholar 

  • Wagner K, Van Mau N, Boichot S, Kajava AV, Krauss U, Grimellec CL, Beck-Sickinger AG, Heitz F (2004) Interactions of the human calcitonin fragment 9-32 with phospholipids: a molecular study. Biophys J 87:386–395

    Article  Google Scholar 

  • Young AA, Gedulin B, Gaeta LS, Prickett KS, Beaumont K, Larson E, Rink TJ (1994) Selective amylin antagonist suppresses rise in plasma lactate after intravenous glucose in the rat: evidence for a metabolic role of endogenous amylin. FEBS Lett 343:237–241

    Article  Google Scholar 

  • Young AA (1995) Lactate production from the rat hindlimb is increased after glucose-administration and is suppressed by a selective amylin antagonist: evidence for action of endogenous amylin in skeletal muscle. Biochem Biophys Res Commun 216:554–559

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Micelli.

Additional information

Proceedings of the XVIII Congress of the Italian Society of Pure and Applied Biophysics (SIBPA), Palermo, Sicily, September 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meleleo, D., Gallucci, E., Picciarelli, V. et al. Acetyl-[Asn30,Tyr32]-calcitonin fragment 8-32 forms channels in phospholipid planar lipid membranes. Eur Biophys J 36, 763–770 (2007). https://doi.org/10.1007/s00249-007-0150-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0150-6

Keywords

Navigation