Skip to main content
Log in

Distinctive Patterns in the Taxonomical Resolution of Bacterioplankton in the Sediment and Pore Waters of Contrasted Freshwater Lakes

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacteria assemblages in lake sediments play a key role in various biogeochemical processes, yet their association with interstitial pore waters has been scarcely investigated. In this study, we utilized Illumina next-generation amplicon sequencing of the 16S rRNA gene to characterize the seasonal bacterial communities in the sediments and pore waters of three contrasted temperate freshwater lakes, namely Pavin, Aydat, and Grangent (French Massif Central). Despite occupying seemingly similar habitats, bacterial communities differed substantially between sediments and pore waters at all seasons with low sharing of operational taxonomic units (OTUs, 6.7 to 20.3%) between them. Sediment-associated bacteria were more rich and diverse than pore water bacteria, indicating a high heterogeneity in the sediment microhabitat. The changes in both sediment and pore water bacterial communities were lake and season specific. The bacterial community showed distinct differences between the lakes, with larger presence of strict anaerobes such as Syntrophus, Syntrophorhabdus, and Sulfuricurvum in the pore water and sediments of Pavin responsible for carbon and sulfur cycling. In both Aydat and Grangent, the hgcI_clade dominated throughout the study period in the pore waters. The higher representation of lesser-known transient members of lake communities such as Methylotenera in the pore waters of Aydat, and Clostridium and Sulfuricurvum in the pore and sediments of Grangent, respectively, were observed during the period of temporary anoxia in summer caused by lake stratification. Our study revealed that in the investigated lakes, the prevailing environmental factors across time and space structured and influenced the adaptation of bacterial communities to specific ecological niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nealson KH (1997) Sediment bacteria: who’s there, what are they doing, and what’s new? Annu Rev Earth Planet Sci 25:403–434

    Article  CAS  PubMed  Google Scholar 

  2. Schwarz JIK, Eckert W, Conrad R (2007) Community structure of Archaea and Bacteria in a profundal lake sediment Lake Kinneret (Israel). Syst Appl Microbiol 30:239–254

    Article  CAS  PubMed  Google Scholar 

  3. Song H, Li Z, Du B, Wang G, Ding Y (2011) Bacterial communities in sediments of the shallow Lake Dongping in China. J Appl Microbiol 112:79–89

    Article  PubMed  Google Scholar 

  4. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Steger K, Premke K, Gudasz C, Sundh I, Tranvik LJ (2011) Microbial biomass and community composition in boreal lake sediments. Limnol Oceanogr 56:725–733

    Article  CAS  Google Scholar 

  6. Bai YH, Shi Q, Wen DH, Li ZX, Jefferson WA, Feng CP, Tang XY (2012) Bacterial communities in the sediments of Dianchi Lake, a partitioned eutrophic waterbody in China. PLoS One 7:e37796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen N, Yang JS, Qu JH, Li HF, Liu WJ, Li BZ, Wang ET, Yuan HL (2015) Sediment prokaryote communities in different sites of eutrophic Lake Taihu and their interactions with environmental factors. World J Microbiol Biotechnol 31:883–896

    Article  CAS  PubMed  Google Scholar 

  8. Schettler G, Schwab MJ, Stebich M (2007) A 700-year record of climate change based on geochemical and palynological data from varved sediments (Lac Pavin, France). Chem Geol 240:11–35

    Article  CAS  Google Scholar 

  9. EPA (1991) Sediment toxicity identification: phase I (characterization), phase II (identification) and phase III (confirmation) modifications of effluent procedures. National Effluent Toxicity Assessment Center. Technical Report, EPA/600/6-91/007. United States Environmental Protection Agency, Washington DC

    Google Scholar 

  10. Rieck A, Herlemann DPR, Jürgens K, Grossart HP (2015) Particle-associated differ from free-living bacteria in the surface waters of the Baltic Sea. Front Microbiol 6:1297

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lønborg C, Søndergaard M (2009) Microbial availability and degradation of dissolved organic carbon and nitrogen in two coastal areas. Estuar Coast Shelf Sci 81:513–520

    Article  Google Scholar 

  12. Mahaffey C, Benitez-Nelson CR, Bidigare RR, Rii Y, Karl DM (2008) Nitrogen dynamics within a wind-driven eddy. Deep-Sea Res Pt II 55:1398–1411

    Article  Google Scholar 

  13. Liu Z, Lozupone C, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pradeep Ram AS, Chaibi-Slouma S, Keshri J, Colombet J, Sime-Ngando T (2016) Functional responses of bacterioplankton diversity and metabolism to experimental bottom-up and top-down forcings. Microb Ecol 72:347–358

    Article  CAS  PubMed  Google Scholar 

  15. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA, a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yue JC, Clayton MK (2005) A similarity measure based on species proportions. Commun Stat–Theor M 34:2123–2131

    Google Scholar 

  19. Danovaro R, Dell’Anno A, Trucco A, Vannucci S (2001) Determination of virus abundance in marine sediments. Appl Environ Microbiol 67:1384–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Montanié H, De Crignis MG, Lavaud J (2015) Viral impact on prokaryotic and microalgal activities in the microphytobenthic biofilm of an intertidal mudflat (French Atlantic Coast). Front Microbiol 6:1214

    Article  PubMed  PubMed Central  Google Scholar 

  21. Duhamel S, Jacquet S (2006) Flow cytometric analysis of bacteria- and virus-like particles in the lake sediments. J Microbiol Methods 64:316–332

    Article  CAS  PubMed  Google Scholar 

  22. Brussaard C, Payet JP, Winter C, Weinbauer MG (2010) Quantification of aquatic viruses by flow cytometry. In: Wilhelm SW, Weinbauer MG, Suttle C (eds) Manual of aquatic viral ecology. American Society of Limnology and Oceanography, Texas, pp. 102–109

    Chapter  Google Scholar 

  23. Bouvier T, del Giorgio PA, Gasol JM (2007) A comparative study of the cytometric characteristics of high and low nucleic-acid bacterioplankton cells from different aquatic ecosystems. Environ Microbiol 9:2050–2066

    Article  CAS  PubMed  Google Scholar 

  24. Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lehours A-C, Evans P, Bardot C, Joblin K, Fonty G (2007) Phylogenetic diversity of archaea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lehours A-C, Bardot C, Pelisson P-F, Guedon A, Pesce S, Demeure G, Sargos D, Fonty G (2009) Successional changes in bacterial community assemblages following anoxia in the hypolimnion of a eutrophic lake. Aquat Microb Ecol 54:71–82

    Article  Google Scholar 

  27. Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NFY, Zhou HW (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl Environ Microbiol 78:8264–8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang JX, Yang YY, Zhao L, Li YZ, Xie SG, Liu Y (2015) Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Appl Microbiol Biotechnol 99:3291–3302

    Article  CAS  PubMed  Google Scholar 

  29. Dai Y, Yang Y, Wu Z, Feng Q, Xie S, Liu Y (2016) Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status. Appl Microbiol Biotechnol 100:4161–4175

    Article  CAS  PubMed  Google Scholar 

  30. Crump BC, Amaral-Zettler LA, Kling GW (2012) Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J 6:1629–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ortega-Retuerta E, Joux F, Jeffrey WH, Ghiglione JF (2013) Spatial variability of particle-attached and freeliving bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10:2747–2759

    Article  Google Scholar 

  32. Bižic-Ionescu M, Zeder M, Ionescu D, Orlić S, Fuchs BM, Grossart H-P, Amann R (2015) Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ Microbiol 17:3500–3514

    Article  PubMed  Google Scholar 

  33. Yakimov MM, Giuliano L, Cappello S, Denaro R, Golyshin PN (2007) Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (eastern Mediterranean). Orig Life Evol Biosph 37:177–188

    Article  PubMed  Google Scholar 

  34. Hamilton TL, Bovee RJ, Sattin SR, et al. (2016) Carbon and sulphur cycling below the chemocline in a meromictic lake and the identification of a novel taxonomic lineage in the FCB superphylum Candidatus aegiribacteria. Front Microbiol 7:598

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jin L, Lee CS, Ahn CY, et al. (2017) Abundant iron and sulphur oxidizers in the stratified sediment of a eutrophic freshwater reservoir with annual cyanobacterial blooms. Sci Rep 7:43814

    Article  PubMed  PubMed Central  Google Scholar 

  36. Glöckner FO, Zaichikov E, Belkova N, et al. (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66:5053–5065

    Article  PubMed  PubMed Central  Google Scholar 

  37. Comeau AM, Harding T, Galand PE, et al. (2012) Vertical distribution of microbial communities in a perennially stratified Arctic lake with saline, anoxic bottom waters. Sci Rep 2:604

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang NF, Zhang T, Yang X, Wang S, Yu Y, Dong LL, Guo YD, Ma YX, Zang JY (2016) Diversity and composition of bacterial community in soils and lake sediments from an Arctic lake area. Front Microbiol 7:1170

    PubMed  PubMed Central  Google Scholar 

  39. Sun MY, Dafforn KA, Johnston EL, Brown MV (2013) Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ Microbiol 15:2517–2531

    Article  PubMed  Google Scholar 

  40. Crump BC, Amaral-Zettler LA, Kling GW (2012) Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J 6:1629–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Febria CM, Beddoes P, Fulthorpe RR, Williams DD (2012) Bacterial community dynamics in the hyporheic zone of an intermittent stream. ISME J 6:1078–1088

    Article  CAS  PubMed  Google Scholar 

  42. Liu Y, Yang SF, Li Y, Yu H, Qin L, Tay JH (2004) The influence of cell and substratum surface hydrophobicities on microbial attachment. J Biotechnol 110:251–256

    Article  CAS  PubMed  Google Scholar 

  43. Liao C, Liang X, Soupir ML, Jarboe LR (2015) Cellular, particle and environmental parameters influencing attachment in surface waters: a review. J Appl Microbiol 119:315–330

    Article  CAS  PubMed  Google Scholar 

  44. Zhao D, Xu H, Zeng J, Cao X, Huang R, Shen F, Yu Z (2017) Community composition and assembly processes of the free-living and particle-attached bacteria in Taihu Lake. FEMS Microbiol Ecol 93:fix62

    Google Scholar 

  45. Kou W, Zhang J, Lu X, Ma Y, Mou X, Wu L (2016) Identification of bacterial communities in sediments of Poyang Lake, the largest freshwater lake in China. SpringerPlus 5:401

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cottrell MT, Kirchman DL (2003) Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697

    Article  Google Scholar 

Download references

Acknowledgements

JK was supported by a postdoctoral fellowship from the Université Clermont Auvergne (formerly Université Blaise Pascal), Clermont Ferrand (France). We thank J. Colombet and F. Perriere for their technical assistance in flow cytometry and nutrient analysis respectively. We appreciate the two reviewers for their time, effort, and valuable contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pradeep Ram.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary materials

ESM 1

(DOCX 959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshri, J., Pradeep Ram, A.S. & Sime-Ngando, T. Distinctive Patterns in the Taxonomical Resolution of Bacterioplankton in the Sediment and Pore Waters of Contrasted Freshwater Lakes. Microb Ecol 75, 662–673 (2018). https://doi.org/10.1007/s00248-017-1074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1074-z

Keywords

Navigation