Skip to main content

Advertisement

Log in

The Overproduction of Indole-3-Acetic Acid (IAA) in Endophytes Upregulates Nitrogen Fixation in Both Bacterial Cultures and Inoculated Rice Plants

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Endophytic bacteria from roots and leaves of rice plants were isolated and identified in order to select the diazotrophs and improve their nitrogen-fixing abilities. The nitrogen-fixing endophytes were identified by PCR amplification of the nifH gene fragment. For this purpose, two isolates, Enterobacter cloacae RCA25 and Klebsiella variicola RCA26, and two model bacteria (Herbaspirillum seropedicae z67 and Sinorhizobium fredii NGR234) were transformed to increase the biosynthesis of the main plant auxin indole-3-acetic acid (IAA). A significant increase in the production of IAA was observed for all strains. When the expression of nifH gene and the activity of the nitrogenase enzyme were analyzed in liquid cultures, we found that they were positively affected in the IAA-overproducing endophytes as compared to the wild-type ones. Rice plants inoculated with these modified strains showed a significant upregulation of the nitrogenase activity when plants infected with the wild-type strains were used as reference. Similar results were obtained too with common bean plants infected with the S. fredii NGR234 strain. These findings suggest that IAA overproduction improves nitrogen-fixing apparatus of endophytic bacteria both in liquid cultures and in inoculated host plants. The present study highlights new perspectives to enhance nitrogen-fixing ability in non-legume crops. These strains could be used as bioinoculants to improve the growth and the yield of agricultural crops, offering an alternative to the use of chemical nitrogen fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dawe D, Dobermann A, Moya P, et al. (2000) How widespread are yield declines in long-term rice experiments in Asia? Field Crops Res 66:175–193

    Article  Google Scholar 

  2. Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  3. Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol. Res. 169:2–17

    Article  PubMed  Google Scholar 

  4. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3. Biotech 5:355–377

    Google Scholar 

  5. Carvalho TLG, Balsemão-Pires E, Saraiva RM, Ferreira PCG, Hemerly AS (2014) Nitrogen signalling in plant interactions with associative and endophytic diazotrophic bacteria. J. Exp. Bot. doi:10.1093/jxb/eru319

    PubMed Central  Google Scholar 

  6. Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Malik KA (2001) Isolation, partial characterization and effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugar cane in vitro. Plant Soil 237:47–54

    Article  CAS  Google Scholar 

  7. Dong Y, Iniguez AL, Triplett EW (2003) Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant Soil 257:49–59

    Article  CAS  Google Scholar 

  8. Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE. doi:10.1371/journal.pone.0020396

    PubMed  PubMed Central  Google Scholar 

  9. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am. J. Bot. 100:17378–11750

    Article  Google Scholar 

  10. Bernard R, Glick (2015) Beneficial plant-bacterial interaction. Springer International Publishing. doi:10.1007/978-3-319-13921-0

  11. Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14:435–443

    Article  PubMed  Google Scholar 

  12. Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl. Microbiol. Biotechnol. 80:199–209

    Article  CAS  PubMed  Google Scholar 

  13. Charpentier M, Oldroyd G (2010) How close are we to nitrogen-fixing cereals? Curr. Opin. Plant Biol. 13:556–564

    Article  CAS  PubMed  Google Scholar 

  14. Gupta G, Panwar J, Akhtar SM, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. Springer. doi:10.1007/978-94-007-5449-2_8

    Google Scholar 

  15. Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR, Jimenez-Guerrero I, Lopez-Baena FJ, Cubo T (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol. Res. 169:325–336

    Article  CAS  PubMed  Google Scholar 

  16. Kazan K (2013) Auxin and the integration of environmental signals into plant root development. Ann. Bot. doi:10.1093/aob/mct229

    PubMed  PubMed Central  Google Scholar 

  17. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  18. Yao AV, Bochow H, Karimov S, Boturov U, Sanginboy S, Sharipov K (2006) Effect of FZB24 Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch. Phytopathol. Plant Protect. 39:1–6

    Article  Google Scholar 

  19. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7:39–43

    Article  Google Scholar 

  20. Glick BR (1995) The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 41:109–114

    Article  CAS  Google Scholar 

  21. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  22. De Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Gent Mol Biol 38:401–419

    Article  Google Scholar 

  23. Defez R, Esposito R, Angelini A, Bianco C (2016) Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring inside nodule bacteroids. MPMI 29:484–495

    Article  CAS  PubMed  Google Scholar 

  24. Bianco C, Senatore B, Arbucci S, Pieraccini G, Defez R (2014) Modulation of endogenous indole-3-acetic acid biosynthesis in bacteroids within Medicago sativa nodules. Appl. Environ. Microbiol. 80:4286–4293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann. Bot. doi:10.1093/aob/mct048

    PubMed  PubMed Central  Google Scholar 

  26. Mus F, Crook MB, Garcia K, et al. (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl. Environ. Microbiol. 82:3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganism to improve productivity of agroecosystems. Crit. Rev. Plant Sci. 23:175–193

    Article  CAS  Google Scholar 

  28. Baldani JI, Pot B, Kirchhof G, Falsen E, Baldani VL, Olivares FL, Hoste B, Kersters K (1996) Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a milk plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF group 1) as Herbaspirillum species 3. Inst J Syst Bacteriol 46:802–810

    Article  CAS  Google Scholar 

  29. Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quere A, Wolherr A, Heinemeyer I, Morgenstrern B (2009) Rhizobium sp. strain NGR234 possesses a remarkable number of secretion systems. Appl Env Microbiol 75:4035–4045

    Article  CAS  Google Scholar 

  30. Bianco C, Imperlini E, Calogero R, Senatore B, Pucci P, Defez R (2006) Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiology 152:2421–2431

    Article  CAS  PubMed  Google Scholar 

  31. Gaby JC, Buckley DH (2012) A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS One. doi:10.1371/journal.pone.0042149

    PubMed  PubMed Central  Google Scholar 

  32. Tamura K, Nei M (1993) Estimation of the number on nucleotide substitutions in the control region on mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512–526

    CAS  PubMed  Google Scholar 

  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetic analysis version 6.0. Mol. Biol. Evol. 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Salkowski E (1885) Ueber das Verhalten der Skatolcarbonsaure im Organismus. Z. Physiol. Chem. 9:23–33

    Google Scholar 

  35. Defez R, Spena A (1998) Method to control gene expression in bacteria, namely Rhizobiaceae, to improve root nodule development, nitrogen fixation and plant biomass production. European Patent Office application number EP98/830674.2, PCT extension PCT 24190. https://worldwide.espacenet.com/publicationDetails/biblio?II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20000518&CC=WO&NR=0028051A1&KC=A1#

  36. Pandolfini T, Storlazzi A, Calabria E, Defez R, Spena A (2000) The spliceosomal intron of the rolA gene of Agrobacterium rhizogenes is a prokaryotic promoter. Mol. Microbiol. 35:1326–1334

    Article  CAS  PubMed  Google Scholar 

  37. Imperlini E, Bianco C, Lonardo E, Camerini S, Cermola M, Moschetti G, Defez R (2009) Effect of indole-3-acetic acid on Sinorhizobium meliloti serviva and on symbiotic nitrogen fixation and stem dry weight production. Appl. Microbiol. Biotechnol. 83:727–738

    Article  CAS  PubMed  Google Scholar 

  38. Camerini S, Senatore B, Lonardo E, Imperlini E, Bianco C, Moschetti G, Rotini GL, Campion B, Defez R (2008) Introduction of novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch. Microbiol. 190:67–77

    Article  CAS  PubMed  Google Scholar 

  39. Sriskandarajah S, Kennedy IR, Yu D, Tchan Y-T (1993) Effects of plant growth regulators on acetylene-reducing associations between Azospirillum brasilense and wheat. Plant Soil 153:165–178

    Article  CAS  Google Scholar 

  40. Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  CAS  PubMed  Google Scholar 

  41. Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3:60–75

    Article  CAS  Google Scholar 

  42. Schmitz RA, Klopprogge K, Grabbe R (2002) Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA. J. Mol. Microbiol. Biotechnol. 4:235–242

    CAS  PubMed  Google Scholar 

  43. Chubatsu LS, Monteiro RA, de Souza EM (2012) Nitrogen fixation control in Herbaspirillum seropedicae. Plant Soil 356:197–207

    Article  CAS  Google Scholar 

  44. Reddy ASN, Chengappa S, Poovaiah BV (1987) Auxin-regulated changes in protein phosphorylation in Pea epicotyls. Biochem Biophys Res Comm 144:944–950

    Article  CAS  PubMed  Google Scholar 

  45. Kato R, Takatsuna S, Wada T, Narihara Y, Suzuki T (1996) In vitro phosphorylation of proteins in IAA-treated mesocotyls in Zea mays. Plant Cell Physiol 37:667–672

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Silvia Ardissone (Department of Microbiology and Molecular Medicine, Geneva) for kindly supplying the NGR234 strain. We are also grateful to Franco Nulli for providing us the rice plants used for the isolation of endophytes. We thank Mr. Rubino Stefano for technical assistance. This work was partially supported by a dedicated grant from the Italian Ministry of Economy and Finance to the National Research Council for the project CISIA “Innovazione e Sviluppo del Mezzogiorno—Conoscenze Integrate per Sostenibilità ed Innovazione del Made in Italy Agroalimentare—Legge no. 191/2009.” This work was also partially supported by the European Commission for funding the ABSTRESS project (FP7 KBBE-2011-289562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Bianco.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interests.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Nucleotide Sequence Accession Numbers

The nucleotide sequence data reported in this paper have been deposited in the National Center for Biotechnology Information database, and they are available using the supplied GenBank accession numbers.

Electronic Supplementary Material

ESM 1

(PDF 60 kb)

ESM 2

(PDF 5476 kb)

ESM 3

(PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Defez, R., Andreozzi, A. & Bianco, C. The Overproduction of Indole-3-Acetic Acid (IAA) in Endophytes Upregulates Nitrogen Fixation in Both Bacterial Cultures and Inoculated Rice Plants. Microb Ecol 74, 441–452 (2017). https://doi.org/10.1007/s00248-017-0948-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0948-4

Keywords

Navigation