Skip to main content

Advertisement

Log in

Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Graba M, Sauvage S, Majdi N, Mialet B, Moulin FY, Urrea G, Buffan-Dubau E, Tackx M, Sabater S, Sanchez-Perez JM (2014) Modelling epilithic biofilms combining hydrodynamics, invertebrate grazing and algal traits. Freshw Biol 59:1213–1228. doi:10.1111/Fwb.12341

    Article  Google Scholar 

  2. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196. doi:10.1016/S0269-7491(99)00091-3

    Article  CAS  PubMed  Google Scholar 

  3. Schneck F, Schwarzbold A, Melo AS (2013) Substrate roughness, fish grazers, and mesohabitat type interact to determine algal biomass and sediment accrual in a high-altitude subtropical stream. Hydrobiologia 711:165–173. doi:10.1007/s10750-013-1477-x

    Article  CAS  Google Scholar 

  4. Uehlinger U, Robinson CT, Hieber M, Zah R (2010) The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657:107–121. doi:10.1007/s10750-009-9963-x

    Article  CAS  Google Scholar 

  5. Hlúbiková D, Novais MH, Dohet A, Hoffmann L, Ector L (2014) Effect of riparian vegetation on diatom assemblages in headwater streams under different land uses. Sci Total Environ 475:234–247. doi:10.1016/j.scitotenv.2013.06.004

    Article  PubMed  Google Scholar 

  6. Bere T, Tundisi JG (2011) Influence of ionic strength and conductivity on benthic diatom communities in a tropical river (Monjolinho), São Carlos-SP, Brazil. Hydrobiologia 661:261–276. doi:10.1007/s10750-010-0532-0

    Article  CAS  Google Scholar 

  7. Sabater S, Guasch H, Romani A, Munoz I (2002) The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469:149–156. doi:10.1023/A:1015549404082

    Article  CAS  Google Scholar 

  8. Jardine TD, Pettit NE, Warfe DM, Pusey BJ, Ward DP, Douglas MM, Davies PM, Bunn SE (2012) Consumer-resource coupling in wet–dry tropical rivers. J Anim Ecol 81:310–322. doi:10.1111/j.1365-2656.2011.01925.x

    Article  PubMed  Google Scholar 

  9. Ford TE, Lock MA (1987) Epilithic metabolism of dissolved organic-carbon in boreal forest rivers. Fems Microbiol Ecol 45:89–97. doi:10.1111/j.1574-6968.1987.tb02344.x

    Article  Google Scholar 

  10. Corcoll N, Bonet B, Leira M, Guasch H (2011) Chl-a fluorescence parameters as biomarkers of metal toxicity in fluvial biofilms: an experimental study. Hydrobiologia 673:119–136. doi:10.1007/s10750-011-0763-8

    Article  CAS  Google Scholar 

  11. Murdock JN, Shields FD, Lizotte RE (2013) Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff. Ecotoxicology 22:215–230. doi:10.1007/s10646-012-1018-9

    Article  CAS  PubMed  Google Scholar 

  12. Poff NL (1992) Why disturbances can be predictable: a perspective on the definition of disturbance in streams. J N Am Benthol Soc 11:86–92. doi:10.2307/1467885

  13. Biggs BJF, Smith RA (2002) Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnol Oceanogr 47:1175–1186

    Article  CAS  Google Scholar 

  14. Poff NL, Olden JD, Merritt DM, Pepin DM (2007) Homogenization of regional river dynamics by dams and global biodiversity implications. Proc Natl Acad Sci U S A 104:5732–5737. doi:10.1073/pnas.0609812104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ponsatí L, Acuña V, Aristi I, Arroita M, García-Berthou E, Dv S, Elosegi A, Sabater S (2015) Biofilm responses to flow regulation by dams in Mediterranean rivers. River Res Appl 31:1003–1016. doi:10.1002/rra.2807

    Article  Google Scholar 

  16. Stanish LF, Nemergut DR, McKnight DM (2011) Hydrologic processes influence diatom community composition in Dry Valley streams. J N Am Benthol Soc 30:1057–1073. doi:10.1899/11-008.1

    Article  Google Scholar 

  17. IPCC (2013) Fifth assessment report. Intergovernmental Panel on Climate Change, World Meteorological Organization, Geneva

    Google Scholar 

  18. Chiu M-C, Kuo M-H (2012) Application of r/K selection to macroinvertebrate responses to extreme floods. Ecol Entomol 37:145–154. doi:10.1111/j.1365-2311.2012.01346.x

  19. Chiu M-C, Kuo M-H, Hong S-Y, Sun Y-H (2013) Impact of extreme flooding on the annual survival of a riparian predator, the Brown Dipper Cinclus pallasii. Ibis 155:377–383. doi:10.1111/Ibi.12035

    Article  Google Scholar 

  20. Izagirre O, Elosegi A (2005) Environmental control of seasonal and inter-annual variations of periphytic biomass in a North Iberian stream. Ann Limnol-Int J Lim 41:35–46. doi:10.1051/Limn/2005004

    Article  Google Scholar 

  21. Tsai JW, Chuang YL, Wu ZY, Kuo MH, Lin HJ (2014) The effects of storm-induced events on the seasonal dynamics of epilithic algal biomass in subtropical mountain streams. Mar Freshw Res 65:25–38. doi:10.1071/Mf13058

    Google Scholar 

  22. Uehlinger U, Buhrer H, Reichert P (1996) Periphyton dynamics in a floodprone prealpine river: evaluation of significant processes by modelling. Freshw Biol 36:249–263. doi:10.1046/j.1365-2427.1996.00082.x

    Article  Google Scholar 

  23. Hillebrand H (2009) Meta-analysis of grazer control of periphyton biomass across aquatic ecosystems. J Phycol 45:798–806. doi:10.1111/j.1529-8817.2009.00702.x

    Article  PubMed  Google Scholar 

  24. Holomuzki JR, Feminella JW, Power ME (2010) Biotic interactions in freshwater benthic habitats. J N Am Benthol Soc 29:220–244. doi:10.1899/08-044.1

    Article  Google Scholar 

  25. Alvarez M, Peckarsky BL (2013) The influence of moss on grazers in high-altitude streams: food, refuge or both? Freshw Biol 58:1982–1994. doi:10.1111/Fwb.12185

    Article  Google Scholar 

  26. Effenberger M, Diehl S, Gerth M, Matthaei CD (2011) Patchy bed disturbance and fish predation independently influence the distribution of stream invertebrates and algae. J Anim Ecol 80:603–614. doi:10.1111/j.1365-2656.2011.01807.x

    Article  PubMed  Google Scholar 

  27. Lin HJ, Peng TR, Cheng IC, Chen LW, Kuo MH, Tzeng CS, Tsai ST, Yang JT, Wu SH, Sun YH, Yu SF, Kao SJ (2012) Trophic model of the subtropical headwater stream habitat of Formosan landlocked salmon Oncorhynchus formosanus. Aquat Biol 17:269–283. doi:10.3354/Ab00481

    Article  Google Scholar 

  28. Wellnitz T, Poff NL (2012) Current-mediated periphytic structure modifies grazer interactions and algal removal. Aquat Ecol 46:521–530. doi:10.1007/s10452-012-9419-7

    Article  Google Scholar 

  29. Hintz WD, Wellnitz T (2013) Current velocity influences the facilitation and removal of algae by stream grazers. Aquat Ecol 47:235–244. doi:10.1007/s10452-013-9438-z

    Article  Google Scholar 

  30. Hoffman AL, Olden JD, Monroe JB, Poff NL, Wellnitz T, Wiens JA (2006) Current velocity and habitat patchiness shape stream herbivore movement. Oikos 115:358–368. doi:10.1111/j.2006.0030-1299.14675.x

    Article  Google Scholar 

  31. Francoeur SN, Biggs BJF (2006) Short-term effects of elevated velocity and sediment abrasion on benthic algal communities. Hydrobiologia 561:59–69. doi:10.1007/s10750-005-1604-4

    Article  Google Scholar 

  32. Poff NL, Wellnitz T, Monroe JB (2003) Redundancy among three herbivorous insects across an experimental current velocity gradient. Oecologia 134:262–269. doi:10.1007/s00442-002-1086-2

    Article  PubMed  Google Scholar 

  33. Alvarez M, Peckarsky BL (2005) How do grazers affect periphyton heterogeneity in streams? Oecologia 142:576–587. doi:10.1007/s00442-004-1759-0

    Article  PubMed  Google Scholar 

  34. McIntire CD, Gregory SV, Steinman AD, Lamberti GA (1996) Modeling benthic algal communities: an example from stream ecology. In: Stevenson RJ, Bothwell ML, Lowe RL (eds) Algal ecology, freshwater benthic ecosystems. Academic, San Diego, pp 670–702

    Google Scholar 

  35. Lobban CS, Chapman DJ, Kemer BP (1988) Experimental phycology: a laboratory manual. Cambridge University Press, Cambridge

  36. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, B, c1 and c2 in higher-plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  37. Kang S-C (1993) Ephemeroptera of Taiwan (excluding Baetidae). PhD dissertation, National Chung Hsing University

  38. Kawai T, Tanida K (2005) Aquatic insects of Japan: manual with keys and illustrations. Tokai University Press, Tokyo

    Google Scholar 

  39. Merritt RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque

    Google Scholar 

  40. Mohseni O, Stefan HG, Erickson TR (1998) A nonlinear regression model for weekly stream temperatures. Water Resour Res 34:2685–2692. doi:10.1029/98wr01877

    Article  Google Scholar 

  41. Bradburd GS, Ralph PL, Coop GM (2013) Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67:3258–3273. doi:10.1111/Evo.12193

    Article  PubMed  Google Scholar 

  42. Chiu M-C, Kuo M-H, Sun Y-H, Hong S-Y, Kuo H-C (2008) Effects of flooding on avian top-predators and their invertebrate prey in a monsoonal Taiwan stream. Freshw Biol 53:1335–1344. doi:10.1111/j.1365-2427.2008.01968.x

  43. Stan Development Team (2014) Stan modeling language: user’s guide and reference manual, version 2.5.0

  44. Stan Development Team (2014) RStan: the R interface to Stan, version 2.5. http://mc-stan.org/rstan.html

  45. Krause P, Boyle DP, Bäse F (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89–97. doi:10.5194/adgeo-5-89-2005

  46. Uehlinger U (1991) Spatial and temporal variability of the periphyton biomass in a prealpine river (Necker, Switzerland). Arch Hydrobiol 123:219–237

    Google Scholar 

  47. Horner RR, Welch EB, Seeley MR, Jacoby JM (1990) Responses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshw Biol 24:215–232. doi:10.1111/j.1365-2427.1990.tb00704.x

    Article  Google Scholar 

  48. Boulêtreau S, Garabétian F, Sauvage S, Sánchez-Pérez J-M (2006) Assessing the importance of a self-generated detachment process in river biofilm models. Freshw Biol 51:901–912. doi:10.1111/j.1365-2427.2006.01541.x

    Article  Google Scholar 

  49. Boulêtreau S, Izagirre O, Garabétian F, Sauvage S, Elosegi A, Sánchez-Pérez J-M (2008) Identification of a minimal adequate model to describe the biomass dynamics of river epilithon. River Res Appl 24:36–53. doi:10.1002/Rra.1046

    Article  Google Scholar 

  50. Jasper S, Bothwell ML (1986) Photosynthetic characteristics of lotic periphyton. Can J Fish Aquat Sci 43:1960–1969

    Article  Google Scholar 

  51. Jørgensen SE, Patten BC, Straskraba M (2000) Ecosystems emerging: 4. Growth. Ecol Modell 126:249–284. doi:10.1016/S0304-3800(00)00268-4

    Article  Google Scholar 

  52. Tang T, Niu SQ, Dudgeon D (2013) Responses of epibenthic algal assemblages to water abstraction in Hong Kong streams. Hydrobiologia 703:225–237. doi:10.1007/s10750-012-1362-z

    Article  CAS  Google Scholar 

  53. Wallace JB (1990) Recovery of lotic macroinvertebrate communities from disturbance. Environ Manag 14:605–620. doi:10.1007/Bf02394712

  54. Feminella JW, Power ME, Resh VH (1989) Periphyton responses to invertebrate grazing and riparian canopy in 3 northern California coastal streams. Freshw Biol 22:445–457. doi:10.1111/j.1365-2427.1989.tb01117.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank three anonymous referees who commented on the manuscript. Our research was supported by research grants from Shei-Pa National Park, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-Juh Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiu, MC., Kuo, MH., Chang, HY. et al. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream. Microb Ecol 72, 372–380 (2016). https://doi.org/10.1007/s00248-016-0791-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0791-z

Keywords

Navigation