Skip to main content

Advertisement

Log in

Left ventricular concentric hypertrophy with cardiac magnetic resonance imaging improves risk stratification in patients with Duchenne muscular dystrophy: a prospective cohort study

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

The development of left ventricular (LV) remodeling has been associated with an increased cardiovascular risk and cardiogenic death, and different patterns of remodeling result in varying levels of prognosis.

Objective

To investigate the association between different patterns of LV remodeling and clinical outcomes in the preclinical stage of patients with Duchenne muscular dystrophy (DMD).

Materials and methods

A total of 148 patients with DMD and 43 sex- and age-matched healthy participants were enrolled. We used the four-quadrant analysis method to investigate LV remodeling based on cardiac magnetic resonance (MR) imaging. Kaplan-Meier curves were generated to illustrate the event-free survival probability stratified by the LV remodeling pattern. Cox regression models were constructed and compared to evaluate the incremental predictive value of the LV remodeling pattern.

Results

During the median follow-up period of 2.2 years, all-cause death, cardiomyopathy, and ventricular arrhythmia occurred in 5, 35, and 7 patients, respectively. LV concentric hypertrophy (hazard ratio 2.91, 95% confidence interval 1.47–5.75, P=0.002) was an independent predictor of composite endpoint events. Compared to the model without LV concentric hypertrophy, the model with LV concentric hypertrophy had significant incremental predictive value (chi-square value 33.5 vs. 25.2, P=0.004).

Conclusion

Age and late gadolinium enhancement positivity were positively correlated with clinical outcomes according to the prediction models. LV concentric hypertrophy was also an independent predictor for risk stratification and provided incremental value for predicting clinical outcomes in the preclinical stage of patients with DMD.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Landfeldt E, Thompson R, Sejersen T et al (2020) Life expectancy at birth in Duchenne muscular dystrophy: a systematic review and meta-analysis. Eur J Epidemiol 35:643–653

    Article  PubMed  PubMed Central  Google Scholar 

  2. Broomfield J, Hill M, Guglieri M et al (2021) Life expectancy in Duchenne muscular dystrophy: reproduced individual patient data meta-analysis. Neurology 97:e2304–e2314

    Article  PubMed  PubMed Central  Google Scholar 

  3. D’Amario D, Amodeo A, Adorisio R et al (2017) A current approach to heart failure in Duchenne muscular dystrophy. Heart 103:1770–1779

    Article  CAS  PubMed  Google Scholar 

  4. Jefferies JL, Eidem BW, Belmont JW et al (2005) Genetic predictors and remodeling of dilated cardiomyopathy in muscular dystrophy. Circulation 112:2799–2804

    Article  PubMed  Google Scholar 

  5. Lieb W, Gona P, Larson MG et al (2014) The natural history of left ventricular geometry in the community: clinical correlates and prognostic significance of change in LV geometric pattern. JACC Cardiovasc Imaging 7:870–878

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lu C, Chen J, Suksaranjit P et al (2020) Regional myocardial remodeling characteristics correlates with cardiac events in sarcoidosis. J Magn Reson Imaging 52:499–509

    Article  PubMed  Google Scholar 

  7. Rodriguez-Palomares JF, Gavara J, Ferreira-González I et al (2019) Prognostic value of initial left ventricular remodeling in patients with reperfused STEMI. Jacc-cardiovasc Imag 12:2445–2456

    Article  Google Scholar 

  8. Krumholz HM, Larson M, Levy D (1995) Prognosis of left ventricular geometric patterns in the Framingham heart study. J Am Coll Cardiol 25:879–884

    Article  CAS  PubMed  Google Scholar 

  9. Greally E, Davison BJ, Blain A et al (2013) Heterogeneous abnormalities of in-vivo left ventricular calcium influx and function in mouse models of muscular dystrophy cardiomyopathy. J Cardiovasc Magn Reson 15:4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jing L, Binkley CM, Suever JD et al (2016) Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 18:28

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ganau A, Devereux RB, Roman MJ et al (1992) Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 19:1550–1558

    Article  CAS  PubMed  Google Scholar 

  12. Ng ACT, Delgado V, Borlaug BA, Bax JJ (2021) Diabesity: The combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol 18:291–304

    Article  PubMed  Google Scholar 

  13. Pezel T, Viallon M, Croisille P et al (2021) Imaging interstitial fibrosis, left ventricular remodeling, and function in stage A and B heart failure. JACC Cardiovasc Imaging 14:1038–1052

    Article  PubMed  Google Scholar 

  14. Rudolph A, Abdel-Aty H, Bohl S et al (2009) Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol 53:284–291

    Article  PubMed  Google Scholar 

  15. Jing L, Nevius CD, Friday CM et al (2017) Ambulatory systolic blood pressure and obesity are independently associated with left ventricular hypertrophic remodeling in children. J Cardiovasc Magn Reson 19:86

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bushby K, Finkel R, Birnkrant DJ et al (2010) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 9:77–93

  17. Birnkrant DJ, Bushby K, Bann CM et al (2018) Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol 17:347–361

  18. Feingold B, Mahle WT, Auerbach S et al (2017) Management of cardiac involvement associated with neuromuscular diseases: a scientific statement from the American Heart Association. Circulation 136:e200–e231

  19. Siddiqui S, Alsaied T, Henson SE et al (2020) Left ventricular magnetic resonance imaging strain predicts the onset of Duchenne muscular dystrophy-associated cardiomyopathy. Circ Cardiovasc Imaging 13:e011526

    Article  PubMed  Google Scholar 

  20. de Simone G, Daniels SR, Devereux RB et al (1992) Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol 20:1251–1260

    Article  PubMed  Google Scholar 

  21. Xu L, Keenan BT, Maislin D et al (2021) Effect of obstructive sleep apnea and positive airway pressure therapy on cardiac remodeling as assessed by cardiac biomarker and magnetic resonance imaging in nonobese and obese adults. Hypertension 77:980–992

    Article  CAS  PubMed  Google Scholar 

  22. Amier RP, Marcks N, Hooghiemstra AM et al (2021) Hypertensive exposure markers by MRI in relation to cerebral small vessel disease and cognitive impairment. JACC Cardiovasc Imaging 14:176–185

    Article  PubMed  Google Scholar 

  23. Vickers AJ, Cronin AM, Begg CB (2011) One statistical test is sufficient for assessing new predictive markers. BMC Med Res Methodol 11:1–7

    Article  Google Scholar 

  24. Cha JJ, Kim IS, Kim JY et al (2022) The association between cardiac involvement and long-term clinical outcomes in patients with Duchenne muscular dystrophy. ESC Heart Fail 9:2199–2206

    Article  PubMed  PubMed Central  Google Scholar 

  25. D’Amario D, Gowran A, Canonico F et al (2018) Dystrophin cardiomyopathies: clinical management, molecular pathogenesis and evolution towards precision medicine. J Clin Med 7:291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Birnkrant DJ, Bushby K, Bann CM et al (2018) Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol 17:251–267

    Article  PubMed  PubMed Central  Google Scholar 

  27. Henson SE, Lang SM, Khoury PR et al (2021) The effect of adiposity on cardiovascular function and myocardial fibrosis in patients with Duchenne muscular dystrophy. J Am Heart Assoc 10:e021037

    Article  PubMed  PubMed Central  Google Scholar 

  28. Menon SC, Etheridge SP, Liesemer KN et al (2014) Predictive value of myocardial delayed enhancement in Duchenne muscular dystrophy. Pediatric Cardiol 35:1279–1285

    Article  Google Scholar 

  29. Cook NR (2018) Quantifying the added value of new biomarkers: how and how not. Diagn Progn Res 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moons KG, de Groot JA, Linnet K et al (2012) Quantifying the added value of a diagnostic test or marker. Clin Chem 58:1408–1417

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82271981, 82202104) and Sichuan Science and Technology Program (2022NSFSC1494, 2023YFG0284), Universal Application Project of Health Commission of Sichuan Province (21PJ048), Clinical Research Finding of Chinese Society of Cardiovascular Disease (CSC) of 2019 (HFCSC2019B01), and Fundamental Research Funds for the Central Universities (SCU2020D4132).

Author information

Authors and Affiliations

Authors

Contributions

W.Y., L.Y., Y.G., and H.X. conceived, supervised, and supported the study. W.Y., L.Y., K.X., R.X., H.F., Y.S., Z.Z., T.X., and X.C. collated and analyzed the data, performed the statistical analysis, and drafted the initial manuscript. W.Y., L.Y., and H.X. interpreted the images. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Hua-yan Xu.

Ethics declarations

Conflicts of interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 966 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Wf., Yu, L., Xu, K. et al. Left ventricular concentric hypertrophy with cardiac magnetic resonance imaging improves risk stratification in patients with Duchenne muscular dystrophy: a prospective cohort study. Pediatr Radiol 54, 208–217 (2024). https://doi.org/10.1007/s00247-024-05856-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-024-05856-1

Keywords

Navigation