Skip to main content

Advertisement

Log in

Screening of cancer predisposition syndromes

  • Pediatric Body MRI
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Pediatric patients with cancer predisposition syndromes are at increased risk of developing malignancies compared with their age-matched peers, necessitating regular surveillance. Screening protocols differ among syndromes and are composed of a number of elements, imaging being one. Surveillance can be initiated in infants, children and adolescents with a tumor known or suspected of being related to a cancer predisposition syndrome or where genetic testing identifies a germline pathogenic gene variant in an asymptomatic child. Pre-symptomatic detection of malignant neoplasms offers potential to improve treatment options and survival outcomes, but the benefits and risks of screening need to be weighed, particularly with variable penetrance in many cancer predisposition syndromes. In this review we discuss the benefits and risks of surveillance imaging and the importance of integrating imaging and non-imaging screening elements. We explore the principles of surveillance imaging with particular reference to whole-body MRI, considering the strategies to minimize false-negative and manage false-positive whole-body MRI results, the value of standardized nomenclature when reporting risk stratification to better guide patient management, and the need for timely communication of results to allay anxiety. Cancer predisposition syndrome screening is a multimodality, multidisciplinary and longitudinal process, so developing formalized frameworks for surveillance imaging programs should enhance diagnostic performance while improving the patient experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang J, Walsh MF, Wu G et al (2015) Germline mutations in predisposition genes in pediatric cancer. N Engl J Med 373:2336–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Young C, Argáez C (2019) Rapid genome-wide testing: a review of clinical utility, cost-effectiveness, and guidelines. Canadian Agency for Drugs and Technologies in Health, Ottawa

    Google Scholar 

  3. Saya S, Killick E, Thomas S et al (2017) Baseline results from the UK SIGNIFY study: a whole-body MRI screening study in TP53 mutation carriers and matched controls. Familial Cancer 16:433–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brodeur GM, Nichols KE, Plon SE et al (2017) Pediatric cancer predisposition and surveillance: an overview, and a tribute to Alfred G. Knudson Jr. Clin Cancer Res 23:e1–e5

  5. Villani A, Shore A, Wasserman JD et al (2016) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 17:1295–1305

    Article  CAS  PubMed  Google Scholar 

  6. Jongmans MC, Loeffen JL, Waanders E et al (2016) Recognition of genetic predisposition in pediatric cancer patients: an easy-to-use selection tool. Eur J Med Genet 59:116–125

    Article  PubMed  Google Scholar 

  7. Greer MC (2018) Imaging of cancer predisposition syndromes. Pediatr Radiol 48:1364–1375

    Article  PubMed  Google Scholar 

  8. Schooler GR, Davis JT, Daldrup-Link HE et al (2018) Current utilization and procedural practices in pediatric whole-body MRI. Pediatr Radiol 48:1101–1107

    Article  PubMed  Google Scholar 

  9. Schäfer JF, Granata C, von Kalle T et al (2020) Whole-body magnetic resonance imaging in pediatric oncology — recommendations by the oncology task force of the ESPR. Pediatr Radiol 50:1162–1174

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilson JM, Jungner YG (1968) Principles and practice of screening for disease. Bol Oficina Sanit Panam 65:281–393

    CAS  PubMed  Google Scholar 

  11. Dobrow MJ, Hagens V, Chafe R et al (2018) Consolidated principles for screening based on a systematic review and consensus process. CMAJ 190:E422–e429

    Article  PubMed  PubMed Central  Google Scholar 

  12. American Cancer Society (2016) Breast cancer early detection and diagnosis: American Cancer Society recommendations for the early detection of breast cancer. American Cancer Society. https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html. Accessed 5 Feb 2021

  13. Voit AM, Arnoldi AP, Douis H et al (2015) Whole-body magnetic resonance imaging in chronic recurrent multifocal osteomyelitis: clinical longterm assessment may underestimate activity. J Rheumatol 42:1455–1462

    Article  PubMed  Google Scholar 

  14. Amadou A, Achatz MIW, Hainaut P (2018) Revisiting tumor patterns and penetrance in germline TP53 mutation carriers: temporal phases of Li-Fraumeni syndrome. Curr Opin Oncol 30:23–29

    Article  CAS  PubMed  Google Scholar 

  15. Kratz CP, Achatz MI, Brugieres L et al (2017) Cancer screening recommendations for individuals with Li-Fraumeni syndrome. Clin Cancer Res 23:e38–e45

    Article  CAS  PubMed  Google Scholar 

  16. Gottumukkala RV, Gee MS, Hampilos PJ, Greer M-LC (2019) Current and emerging roles of whole-body MRI in evaluation of pediatric cancer patients. Radiographics 39:516–534

    Article  PubMed  Google Scholar 

  17. Tak CR, Biltaji E, Kohlmann W et al (2019) Cost-effectiveness of early cancer surveillance for patients with Li-Fraumeni syndrome. Pediatr Blood Cancer 66:e27629

    Article  PubMed  PubMed Central  Google Scholar 

  18. McBride KA, Ballinger ML, Schlub TE et al (2017) Psychosocial morbidity in TP53 mutation carriers: is whole-body cancer screening beneficial? Familial Cancer 16:423–432

    Article  CAS  PubMed  Google Scholar 

  19. Schmidt CO, Sierocinski E, Hegenscheid K et al (2016) Impact of whole-body MRI in a general population study. Eur J Epidemiol 31:31–39

    Article  PubMed  Google Scholar 

  20. Grasparil AD 2nd, Gottumukkala RV, Greer MC et al (2020) Whole-body MRI surveillance of cancer predisposition syndromes: current best practice guidelines for use, performance, and interpretation. AJR Am J Roentgenol 215:1002–1011

    Article  PubMed  Google Scholar 

  21. Greer MC, Voss SD, States LJ (2017) Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res 23:e6–e13

    Article  PubMed  Google Scholar 

  22. Hegenscheid K, Seipel R, Schmidt CO et al (2013) Potentially relevant incidental findings on research whole-body MRI in the general adult population: frequencies and management. Eur Radiol 23:816–826

    Article  PubMed  Google Scholar 

  23. Schultz KAP, Williams GM, Kamihara J et al (2018) DICER1 and associated conditions: identification of at-risk individuals and recommended surveillance strategies. Clin Cancer Res 24:2251–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rednam SP, Erez A, Druker H et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e68–e75

    Article  CAS  PubMed  Google Scholar 

  25. Evans DGR, Salvador H, Chang VY et al (2017) Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 1. Clin Cancer Res 23:e46–e53

    Article  PubMed  Google Scholar 

  26. Evans DGR, Salvador H, Chang VY et al (2017) Cancer and central nervous system tumor surveillance in pediatric neurofibromatosis 2 and related disorders. Clin Cancer Res 23:e54–e61

    Article  CAS  PubMed  Google Scholar 

  27. Tabori U, Hansford JR, Achatz MI et al (2017) Clinical management and tumor surveillance recommendations of inherited mismatch repair deficiency in childhood. Clin Cancer Res 23:e32–e37

    Article  PubMed  Google Scholar 

  28. Foulkes WD, Kamihara J, Evans DGR et al (2017) Cancer surveillance in Gorlin syndrome and rhabdoid tumor predisposition syndrome. Clin Cancer Res 23:e62–e67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nemes K, Bens S, Bourdeaut F et al (1993) Rhabdoid tumor predisposition syndrome. In: Adam MP, Ardinger HH, Pagon RA et al (eds) GeneReviews. University of Washington, Seattle

    Google Scholar 

  30. Kamihara J, Bourdeaut F, Foulkes WD et al (2017) Retinoblastoma and neuroblastoma predisposition and surveillance. Clin Cancer Res 23:e98–e106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Friedman DN, Hsu M, Moskowitz CS et al (2020) Whole-body magnetic resonance imaging as surveillance for subsequent malignancies in preadolescent, adolescent, and young adult survivors of germline retinoblastoma: an update. Pediatr Blood Cancer 67:e28389

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tonorezos ES, Friedman DN, Barnea D et al (2020) Recommendations for long-term follow-up of adults with heritable retinoblastoma. Ophthalmology 127:1549–1557

    Article  PubMed  Google Scholar 

  33. Schultz KAP, Rednam SP, Kamihara J et al (2017) PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e76–e82

    Article  CAS  PubMed  Google Scholar 

  34. Vanbinst AM, Brussaard C, Vergauwen E et al (2019) A focused 35-minute whole body MRI screening protocol for patients with von Hippel-Lindau disease. Hered Cancer Clin Pract 17:22

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chavhan GB, Alsabban Z, Babyn PS (2014) Diffusion-weighted imaging in pediatric body MR imaging: principles, technique, and emerging applications. Radiographics 34:E73–E88

    Article  PubMed  Google Scholar 

  36. Greer MC (2018) Whole-body magnetic resonance imaging: techniques and non-oncologic indications. Pediatr Radiol 48:1348–1363

    Article  PubMed  Google Scholar 

  37. Mohan S, Moineddin R, Chavhan GB (2015) Pediatric whole-body magnetic resonance imaging: intra-individual comparison of technical quality, artifacts, and fixed structure visibility at 1.5 and 3 T. Indian J Radiol Imaging 25:353–358

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schmidt GP, Wintersperger B, Graser A et al (2007) High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 tesla: a comparative study. Investig Radiol 42:449–459

    Article  Google Scholar 

  39. Azzedine B, Kahina MB, Dimitri P et al (2015) Whole-body diffusion-weighted MRI for staging lymphoma at 3.0 T: comparative study with MR imaging at 1.5 T. Clin Imaging 39:104–109

    Article  PubMed  Google Scholar 

  40. Mürtz P, Kaschner M, Träber F et al (2012) Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T. Eur J Radiol 81:3614–3623

    Article  PubMed  Google Scholar 

  41. Lauenstein TC, Goehde SC, Herborn CU et al (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148

    Article  PubMed  Google Scholar 

  42. Takahara T, Kwee T, Kibune S et al (2010) Whole-body MRI using a sliding table and repositioning surface coil approach. Eur Radiol 20:1366–1373

    Article  PubMed  Google Scholar 

  43. Zadig P, von Brandis E, Lein RK et al (2021) Whole-body magnetic resonance imaging in children — how and why? A systematic review. Pediatr Radiol 51:14–24

    Article  PubMed  Google Scholar 

  44. Littooij AS, Kwee TC, Barber I et al (2014) Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/CT-based reference standard. Eur Radiol 24:1153–1165

    Article  PubMed  Google Scholar 

  45. Goo HW (2010) Whole-body MRI of neuroblastoma. Eur J Radiol 75:306–314

    Article  PubMed  Google Scholar 

  46. Kwee TC, Takahara T, Ochiai R et al (2008) Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 18:1937–1952

    Article  PubMed  PubMed Central  Google Scholar 

  47. Stanescu AL, Shaw DW, Murata N et al (2020) Brain tissue gadolinium retention in pediatric patients after contrast-enhanced magnetic resonance exams: pathological confirmation. Pediatr Radiol 50:388–396

    Article  PubMed  Google Scholar 

  48. Bojadzieva J, Amini B, Day SF et al (2018) Whole body magnetic resonance imaging (WB-MRI) and brain MRI baseline surveillance in TP53 germline mutation carriers: experience from the Li-Fraumeni syndrome education and early detection (LEAD) clinic. Familial Cancer 17:287–294

    Article  PubMed  Google Scholar 

  49. O'Neill AF, Voss SD, Jagannathan JP et al (2018) Screening with whole-body magnetic resonance imaging in pediatric subjects with Li-Fraumeni syndrome: a single institution pilot study. Pediatr Blood Cancer 65

  50. Lecouvet FE (2016) Whole-body MR imaging: musculoskeletal applications. Radiology 279:345–365

    Article  PubMed  Google Scholar 

  51. Anupindi SA, Bedoya MA, Lindell RB et al (2015) Diagnostic performance of whole-body MRI as a tool for cancer screening in children with genetic cancer-predisposing conditions. AJR Am J Roentgenol 205:400–408

    Article  PubMed  Google Scholar 

  52. Lee SY, Park HJ, Kim MS et al (2018) An initial experience with the use of whole body MRI for cancer screening and regular health checks. PLoS One 13:e0206681

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pasoglou V, Michoux N, Larbi A et al (2018) Whole body MRI and oncology: recent major advances. Br J Radiol 91:20170664

    Article  PubMed  PubMed Central  Google Scholar 

  54. Paixão D, Guimarães MD, de Andrade KC et al (2018) Whole-body magnetic resonance imaging of Li-Fraumeni syndrome patients: observations from a two rounds screening of Brazilian patients. Cancer Imaging 18:27

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zugni F, Padhani AR, Koh DM et al (2020) Whole-body magnetic resonance imaging (WB-MRI) for cancer screening in asymptomatic subjects of the general population: review and recommendations. Cancer Imaging 20:34

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ballinger ML, Best A, Mai PL et al (2017) Baseline surveillance in Li-Fraumeni syndrome using whole-body magnetic resonance imaging: a meta-analysis. JAMA Oncol 3:1634–1639

    Article  PubMed  Google Scholar 

  57. Lee AY, Wisner DJ, Aminololama-Shakeri S et al (2017) Inter-reader variability in the use of BI-RADS descriptors for suspicious findings on diagnostic mammography: a multi-institution study of 10 academic radiologists. Acad Radiol 24:60–66

    Article  PubMed  Google Scholar 

  58. Mai PL, Khincha PP, Loud JT et al (2017) Prevalence of cancer at baseline screening in the National Cancer Institute Li-Fraumeni syndrome cohort. JAMA Oncol 3:1640–1645

    Article  PubMed  PubMed Central  Google Scholar 

  59. Saade-Lemus S, Degnan AJ, Acord MR et al (2019) Whole-body magnetic resonance imaging of pediatric cancer predisposition syndromes: special considerations, challenges and perspective. Pediatr Radiol 49:1506–1515

    Article  PubMed  Google Scholar 

  60. Turcotte LM, Neglia JP, Reulen RC et al (2018) Risk, risk factors, and surveillance of subsequent malignant neoplasms in survivors of childhood cancer: a review. J Clin Oncol 36:2145–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Manoharan N, O'Brien T (2020) Childhood cancer: unique opportunities and inherent challenges. Med J Aust 212:110–111

    Article  PubMed  Google Scholar 

  62. Villani A, Tabori U, Schiffman J et al (2011) Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 12:559–567

    Article  CAS  PubMed  Google Scholar 

  63. McNeil DE, Brown M, Ching A et al (2001) Screening for Wilms tumor and hepatoblastoma in children with Beckwith-Wiedemann syndromes: a cost-effective model. Med Pediatr Oncol 37:349–356

    Article  CAS  PubMed  Google Scholar 

  64. Glasziou PP, Jones MA, Pathirana T et al (2020) Estimating the magnitude of cancer overdiagnosis in Australia. Med J Aust 212:163–168

    Article  PubMed  Google Scholar 

  65. Malviya S, Voepel-Lewis T, Eldevik OP et al (2000) Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth 84:743–748

    Article  CAS  PubMed  Google Scholar 

  66. Slovis TL (2011) Sedation and anesthesia issues in pediatric imaging. Pediatr Radiol 41:514–516

    Article  PubMed  Google Scholar 

  67. Mason KP, Michna E, DiNardo JA et al (2002) Evolution of a protocol for ketamine-induced sedation as an alternative to general anesthesia for interventional radiologic procedures in pediatric patients. Radiology 225:457–465

    Article  PubMed  Google Scholar 

  68. Sanborn PA, Michna E, Zurakowski D et al (2005) Adverse cardiovascular and respiratory events during sedation of pediatric patients for imaging examinations. Radiology 237:288–294

    Article  PubMed  Google Scholar 

  69. Andropoulos DB, Greene MF (2017) Anesthesia and developing brains — implications of the FDA warning. N Engl J Med 376:905–907

    Article  PubMed  Google Scholar 

  70. Hu D, Flick RP, Zaccariello MJ et al (2017) Association between exposure of young children to procedures requiring general anesthesia and learning and behavioral outcomes in a population-based birth cohort. Anesthesiology 127:227–240

    Article  PubMed  Google Scholar 

  71. Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804

    Article  PubMed  Google Scholar 

  72. Durand DJ, Young M, Nagy P et al (2015) Mandatory child life consultation and its impact on pediatric MRI workflow in an academic medical center. J Am Coll Radiol 12:594–598

    Article  PubMed  Google Scholar 

  73. Carter AJ, Greer ML, Gray SE et al (2010) Mock MRI: reducing the need for anaesthesia in children. Pediatr Radiol 40:1368–1374

    Article  PubMed  Google Scholar 

  74. de Bie HM, Boersma M, Wattjes MP et al (2010) Preparing children with a mock scanner training protocol results in high quality structural and functional MRI scans. Eur J Pediatr 169:1079–1085

    Article  PubMed  PubMed Central  Google Scholar 

  75. Barnea-Goraly N, Weinzimer SA, Ruedy KJ et al (2014) High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner — the diabetes research in children network (DirecNet) experience. Pediatr Radiol 44:181–186

    Article  PubMed  Google Scholar 

  76. Khan JJ, Donnelly LF, Koch BL et al (2007) A program to decrease the need for pediatric sedation for CT and MRI. Appl Radiol 36:30–33

    Article  Google Scholar 

  77. Harned RK 2nd, Strain JD (2001) MRI-compatible audio/visual system: impact on pediatric sedation. Pediatr Radiol 31:247–250

    Article  PubMed  Google Scholar 

  78. Courtier J, Cardenas A, Tan C et al (2015) Nonanesthesia magnetic resonance enterography in young children: feasibility, technique, and performance. J Pediatr Gastroenterol Nutr 60:754–761

    Article  PubMed  Google Scholar 

  79. Perez M, Cuscaden C, Somers JF et al (2019) Easing anxiety in preparation for pediatric magnetic resonance imaging: a pilot study using animal-assisted therapy. Pediatr Radiol 49:1000–1009

    Article  PubMed  Google Scholar 

  80. Paramathas S, Guha T, Pugh TJ et al (2020) Considerations for the use of circulating tumor DNA sequencing as a screening tool in cancer predisposition syndromes. Pediatr Blood Cancer 67:e28758

    Article  CAS  PubMed  Google Scholar 

  81. Klenk C, Gawande R, Uslu L et al (2014) Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 15:275–285

  82. Aghighi M, Pisani LJ, Sun Z et al (2016) Speeding up PET/MR for cancer staging of children and young adults. Eur Radiol 26:4239–4248

    Article  PubMed  PubMed Central  Google Scholar 

  83. Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. New Engl J Med 348:2491–2499

    Article  PubMed  Google Scholar 

  84. Heesakkers RA, Hövels AM, Jager GJ et al (2008) MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol 9:850–856

    Article  CAS  PubMed  Google Scholar 

  85. Heilmaier C, Lutz AM, Bolog N et al (2009) Focal liver lesions: detection and characterization at double-contrast liver MR imaging with ferucarbotran and gadobutrol versus single-contrast liver MR imaging. Radiology 253:724–733

    Article  PubMed  Google Scholar 

  86. Lu M, Cohen MH, Rieves D et al (2010) FDA report: ferumoxytol for intravenous iron therapy in adult patients with chronic kidney disease. Am J Hematol 85:315–319

    CAS  PubMed  Google Scholar 

  87. Bashir MR, Bhatti L, Marin D et al (2015) Emerging applications for ferumoxytol as a contrast agent in MRI. J Magn Reson Imaging 41:884–898

    Article  PubMed  Google Scholar 

  88. Biderman Waberski M, Lindhurst M, Keppler-Noreuil KM et al (2018) Urine cell-free DNA is a biomarker for nephroblastomatosis or Wilms tumor in PIK3CA-related overgrowth spectrum (PROS). Genet Med 20:1077–1081

    Article  CAS  PubMed  Google Scholar 

  89. Michel ME, Konczyk DJ, Yeung KS et al (2018) Causal somatic mutations in urine DNA from persons with the CLOVES subgroup of the PIK3CA-related overgrowth spectrum. Clin Genet 93:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kozak BM, Jaimes C, Kirsch J et al (2020) MRI techniques to decrease imaging times in children. Radiographics 40:485–502

    Article  PubMed  Google Scholar 

  91. Zhu B, Liu JZ, Cauley SF et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492

    Article  CAS  PubMed  Google Scholar 

  92. Bilgic B, Gagoski BA, Cauley SF et al (2015) Wave-CAIPI for highly accelerated 3D imaging. Magn Reson Med 73:2152–2162

    Article  PubMed  Google Scholar 

  93. Daldrup-Link HE, Franzius C, Link TM et al (2001) Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 177:229–236

    Article  CAS  PubMed  Google Scholar 

  94. Sher AC, Seghers V, Paldino MJ et al (2016) Assessment of sequential PET/MRI in comparison with PET/CT of pediatric lymphoma: a prospective study. AJR Am J Roentgenol 206:623–631

    Article  PubMed  Google Scholar 

  95. Sammer MBK, Sher AC, States LJ et al (2020) Current trends in pediatric nuclear medicine: a Society for Pediatric Radiology membership survey. Pediatr Radiol 50:1139–1147

    Article  PubMed  Google Scholar 

  96. Schmall JP, Surti S, Otero H et al (2020) Investigating low-dose image quality in whole-body pediatric (18)F-FDG scans using time-of-flight PET/MRI. J Nucl Med 62:123–130

    Article  PubMed  Google Scholar 

  97. Karp JS, Viswanath V, Geagan MJ et al (2020) PennPET explorer: design and preliminary performance of a whole-body imager. J Nucl Med 61:136–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cherry SR, Jones T, Karp JS et al (2018) Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med 59:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Drs. David Malkin and Anita Villani for their leadership in cancer predisposition syndrome surveillance, combining their determination and infectious enthusiasm to improve the care of children with cancer predisposition syndromes both locally and globally, and special thanks to David for kindly reviewing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Louise C. Greer.

Ethics declarations

Conflicts of interest

Michael Gee receives research funding from Takeda-Millennium Pharmaceuticals. Mary-Louise Greer has received an AbbVie research grant/honoraria and Samsung honoraria.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sarhani, H., Gottumukkala, R.V., Grasparil, A.D.S. et al. Screening of cancer predisposition syndromes. Pediatr Radiol 52, 401–417 (2022). https://doi.org/10.1007/s00247-021-05023-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-05023-w

Keywords

Navigation