Skip to main content
Log in

Unravelling neuroinflammation in abusive head trauma with radiotracer imaging

  • Child abuse imaging
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Abusive head trauma (AHT) is a leading cause of mortality and morbidity in child abuse, with a mortality rate of approximately 25%. In survivors, the prognosis remains dismal, with high prevalence of cerebral palsy, epilepsy and neuropsychiatric disorders. Early and accurate diagnosis of AHT is challenging, both clinically and radiologically, with up to one-third of cases missed on initial examination. Moreover, most of the management in AHT is supportive, reflective of the lack of clear understanding of specific pathogenic mechanisms underlying secondary insult, with approaches targeted toward decreasing intracranial hypertension and reducing cerebral metabolism, cell death and excitotoxicity. Multiple studies have elucidated the role of pro- and anti-inflammatory cytokines and chemokines with upregulation/recruitment of microglia/macrophages, oligodendrocytes and astrocytes in severe traumatic brain injury (TBI). In addition, recent studies in animal models of AHT have demonstrated significant upregulation of microglia, with a potential role of inflammatory cascade contributing to secondary insult. Despite the histological and biochemical evidence, there is a significant dearth of specific imaging approaches to identify this neuroinflammation in AHT. The primary motivation for development of such imaging approaches stems from the need to therapeutically target neuroinflammation and establish its utility in monitoring and prognostication. In the present paper, we discuss the available data suggesting the potential role of neuroinflammation in AHT and role of radiotracer imaging in aiding diagnosis and patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Choudhary AK, Servaes S, Slovis TL et al (2018) Consensus statement on abusive head trauma in infants and young children. Pediatr Radiol 48:1048–1065

    Article  PubMed  Google Scholar 

  2. Christian CW, Committee on Child Abuse and Neglect (2015) The evaluation of suspected child physical abuse. Pediatrics 135:e1337–1354

  3. Ryan ME (2020) Rapid magnetic resonance imaging screening for abusive head trauma. Pediatr Radiol 50:13–14

    Article  PubMed  Google Scholar 

  4. Nuño M, Ugiliweneza B, Zepeda V et al (2018) Long-term impact of abusive head trauma in young children. Child Abuse Negl 85:39–46

    Article  PubMed  Google Scholar 

  5. Duhaime AC, Christian CW (2019) Abusive head trauma: evidence, obfuscation, and informed management. J Neurosurg Pediatr 24:481–488

    Article  PubMed  Google Scholar 

  6. Adamsbaum C, Grabar S, Mejean N, Rey-Salmon C (2010) Abusive head trauma: judicial admissions highlight violent and repetitive shaking. Pediatrics 126:546–555

    Article  PubMed  Google Scholar 

  7. Kleinman PK (2015) Diagnostic imaging of child abuse. Cambridge University Press, Cambridge

  8. Lind K, Laurent-Vannier A, Toure H et al (2013) Outcome after a shaken baby syndrome. Arch Pediatr 20:446–448

    Article  CAS  PubMed  Google Scholar 

  9. Matschke J, Herrmann B, Sperhake J et al (2009) Shaken baby syndrome — a common variant of nonaccidental head injury in infants. Dtsch Arztebl 106:211–217

    Google Scholar 

  10. Jenny C, Hymel KP, Ritzen A et al (1999) Analysis of missed cases of abusive head trauma. J Am Med Assoc 281:621–626

    Article  CAS  Google Scholar 

  11. Pollanen MS, Smith CR, Chiasson DA et al (2002) Fatal child abuse-maltreatment syndrome: a retrospective study in Ontario, Canada, 1990-1995. Forensic Sci Int 126:101–104

    Article  PubMed  Google Scholar 

  12. Miller TR, Steinbeigle R, Lawrence BA et al (2018) Lifetime cost of abusive head trauma at ages 0–4, USA. Prev Sci 19:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  13. Iqbal O’Meara AM, Sequeira J, Miller Ferguson N (2020) Advances and future directions of diagnosis and management of pediatric abusive head trauma: a review of the literature. Front Neurol 11:118

    Article  PubMed  PubMed Central  Google Scholar 

  14. Leventhal JM, Asnes AG, Pavlovic L, Moles RL (2014) Diagnosing abusive head trauma: the challenges faced by clinicians. Pediatr Radiol 44:537–542

    Article  Google Scholar 

  15. Orman G, Kralik SF, Meoded A et al (2020) MRI findings in pediatric abusive head trauma: a review. J Neuroimaging 30:15–27

    Article  PubMed  Google Scholar 

  16. Buttram SDW, Wisniewski SR, Jackson EK et al (2007) Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J Neurotrauma 24:1707–1717

    Article  PubMed  Google Scholar 

  17. Wang G, Zhang YP, Gao Z et al (2018) Pathophysiological and behavioral deficits in developing mice following rotational acceleration–deceleration traumatic brain injury. Dis model Mech 11:dmm030387

  18. Hanlon LA, Huh JW, Raghupathi R (2016) Minocycline transiently reduces microglia/macrophage activation but exacerbates cognitive deficits following repetitive traumatic brain injury in the neonatal rat. J Neuropathol Exp Neurol 75:214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hedlund GL, Frasier LD (2009) Neuroimaging of abusive head trauma. Forensic Sci Med Pathol 5:280–290

    Article  PubMed  Google Scholar 

  20. Hsieh KLC, Zimmerman RA, Kao HW, Chen CY (2015) Revisiting neuroimaging of abusive head trauma in infants and young children. AJR Am J Roentgenol 204:944–952

    Article  PubMed  Google Scholar 

  21. Shekdar K (2016) Imaging of abusive trauma. Indian J Pediatr 83:578–588

    Article  PubMed  Google Scholar 

  22. Lee B, Newberg A (2005) Neuroimaging in traumatic brain imaging. NeuroRx 2:372–383

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hettler J, Greenes DS (2003) Can the initial history predict whether a child with a head injury has been abused? Pediatrics 111:602–607

    Article  PubMed  Google Scholar 

  24. Amyot F, Arciniegas DB, Brazaitis MP et al (2015) A review of the effectiveness of neuroimaging modalities for the detection of traumatic brain injury. J Neurotrauma 32:1693–1721

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vázquez E, Delgado I, Sánchez-Montañez A et al (2014) Imaging abusive head trauma: why use both computed tomography and magnetic resonance imaging? Pediatr Radiol 44:589–603

    Article  Google Scholar 

  26. Donat CK, Scott G, Gentleman SM, Sastre M (2017) Microglial activation in traumatic brain injury. Front Aging Neurosci 9:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2011) Immunolocalization of toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation 19:10–19

    Article  PubMed  CAS  Google Scholar 

  28. Bell MJ, Kochanek PM, Doughty LA et al (1997) Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J Neurotrauma 14:451–457

    Article  CAS  PubMed  Google Scholar 

  29. Chiaretti A, Genovese O, Aloe L et al (2005) Interleukin 1β and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv Syst 21:185–193

    Article  PubMed  Google Scholar 

  30. Waters RJ, Murray GD, Teasdale GM et al (2013) Cytokine gene polymorphisms and outcome after traumatic brain injury. J Neurotrauma 30:1710–1716

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ojo JO, Mouzon B, Greenberg MB et al (2013) Repetitive mild traumatic brain injury augments tau pathology and glial activation in aged hTau mice. J Neuropathol Exp Neurol 72:137–151

    Article  CAS  PubMed  Google Scholar 

  32. Petraglia A, Plog B, Dayawansa S et al (2014) The pathophysiology underlying repetitive mild traumatic brain injury in a novel mouse model of chronic traumatic encephalopathy. Surg Neurol Int 5:184

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gao H, Han Z, Bai R et al (2017) The accumulation of brain injury leads to severe neuropathological and neurobehavioral changes after repetitive mild traumatic brain injury. Brain Res 1657:1–8

    Article  CAS  PubMed  Google Scholar 

  34. Kochanek PM, Berger RP, Fink EL et al (2013) The potential for bio-mediators and biomarkers in pediatric traumatic brain injury and neurocritical care. Front Neurol 4:40

    Article  PubMed  PubMed Central  Google Scholar 

  35. Venneti S, Lopresti BJ, Wang G et al (2007) A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 102:2118–2131

    Article  CAS  PubMed  Google Scholar 

  36. Rupprecht R, Papadopoulos V, Rammes G et al (2010) Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders. Nat Rev Drug Discov 9:971–988

    Article  CAS  PubMed  Google Scholar 

  37. Turkheimer FE, Rizzo G, Bloomfield PS et al (2015) The methodology of TSPO imaging with positron emission tomography. Biochem Soc Trans 43:586–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zanotti-Fregonara P, Veronese M, Rizzo G et al (2020) Letter to the editor re: confirmation of specific binding of the 18-kDa translocator protein (TSPO) radioligand [18F]GE-180: a blocking study using XBD173 in multiple sclerosis normal appearing white and grey matter. Mol Imaging Biol 22:10–12

    Article  PubMed  Google Scholar 

  39. Fan Z, Calsolaro V, Atkinson RA et al (2016) Flutriciclamide (18F-GE180) PET: first-in-human PET study of novel third-generation in vivo marker of human translocator protein. J Nucl Med 57:1753–1759

    Article  CAS  PubMed  Google Scholar 

  40. Elia J, Li H, Zhang S et al (2018) 1.23 pilot study with new positron emission tomography (PET) radiotracer 18F-Ge180 to image neuroinflammation in youths with neuropsychiatric symptoms. J Am Acad Child Adolesc Psychiatry 57:S142

    Article  Google Scholar 

  41. Jain BG, Li H, Zhang S et al (2018) Use of the radiotracer 18F-GE180 for PET scan imaging of active neuro-inflammation in children with multiple sclerosis. Presented at the 15th International Child Neurology Congress 2018, Mumbai

  42. Wadsworth H, Jones PA, Chau WF et al (2012) GE-180: a novel fluorine-18 labelled PET tracer for imaging translocator protein 18 kDa (TSPO). Bioorg Med Chem Lett 22:1308–1313

    Article  CAS  PubMed  Google Scholar 

  43. Boutin H, Murray K, Pradillo J et al (2015) 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke. Eur J Nucl Med Mol Imaging 42:503–511

    Article  CAS  PubMed  Google Scholar 

  44. Airas L, Dickens AM, Elo P et al (2015) In vivo PET imaging demonstrates diminished microglial activation after Fingolimod treatment in an animal model of multiple sclerosis. J Nucl Med 56:305–310

  45. Nack A, Brendel M, Nedelcu J et al (2019) Expression of translocator protein and [18F]-GE180 ligand uptake in multiple sclerosis animal models. Cells 8:94

    Article  CAS  PubMed Central  Google Scholar 

  46. Liu B, Le KX, Park MA et al (2015) In vivo detection of age- and disease-related increases in neuroinflammation by18F-GE180 TSPO microPET imaging in wild-type and Alzheimer’s transgenic mice. J Neurosci 35:15716–15730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brendel M, Probst F, Jaworska A et al (2016) Glial activation and glucose metabolism in a transgenic amyloid mouse model: a triple-tracer PET study. J Nucl Med 57:954–960

    Article  CAS  PubMed  Google Scholar 

  48. Yu I, Inaji M, Maeda J et al (2010) Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography. J Neurotrauma 27:1463–1475

    Article  PubMed  Google Scholar 

  49. Cao T, Thomas TC, Ziebell JM et al (2012) Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 225:65–75

    Article  CAS  PubMed  Google Scholar 

  50. Venneti S, Wagner AK, Wang G et al (2007) The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: implications for PET imaging. Exp Neurol 207:118–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Folkersma H, Foster Dingley JC, van Berckel BNM et al (2011) Increased cerebral (R)-[11C]PK11195 uptake and glutamate release in a rat model of traumatic brain injury: a longitudinal pilot study. J Neuroinflammation 8:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Yue X, Kiesewetter DO et al (2014) PET imaging of neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. Eur J Nucl Med Mol Imaging 41:1440–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Miyazawa N, Diksic M, Yamamoto Y (1995) Chronological study of peripheral benzodiazepine binding sites in the rat brain stab wounds using [3H] PK-11195 as a marker for gliosis. Acta Neurochir 137:207–216

    Article  CAS  PubMed  Google Scholar 

  54. Grossman R, Paden CM, Fry PA et al (2012) Persistent region-dependent neuroinflammation, NMDA receptor loss and atrophy in an animal model of penetrating brain injury. Future Neurol 7:329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grossman R, Shohami E, Alexandrovich A et al (2003) Increase in peripheral benzodiazepine receptors and loss of glutamate NMDA receptors in a mouse model of closed head injury: a quantitative autoradiographic study. Neuroimage 20:1971–1981

    Article  CAS  PubMed  Google Scholar 

  56. Soustiel JF, Palzur E, Vlodavsky E et al (2008) The effect of oxygenation level on cerebral post-traumatic apoptotsis is modulated by the 18-kDa translocator protein (also known as peripheral-type benzodiazepine receptor) in a rat model of cortical contusion. Neuropathol Appl Neurobiol 34:412–423

    Article  CAS  PubMed  Google Scholar 

  57. Ramlackhansingh AF, Brooks DJ, Greenwood RJ et al (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70:374–383

    Article  PubMed  Google Scholar 

  58. Folkersma H, Boellaard R, Yaqub M et al (2011) Widespread and prolonged increase in (R)-11C-PK11195 binding after traumatic brain injury. J Nucl Med 52:1235–1239

    Article  PubMed  Google Scholar 

  59. Coughlin JM, Wang Y, Munro CA et al (2015) Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiol Dis 74:58–65

    Article  PubMed  Google Scholar 

  60. Coughlin JM, Yuchuanwang Y, Minn I et al (2017) Imaging of glial cell activation and white matter integrity in brains of active and recently retired National Football League players. JAMA Neurol 74:67–74

    Article  PubMed  PubMed Central  Google Scholar 

  61. Scott G, Hellyer PJ, Ramlackhansingh AF et al (2015) Thalamic inflammation after brain trauma is associated with thalamo-cortical white matter damage. J Neuroinflammation 12:224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Greeley CS (2015) Abusive head trauma: a review of the evidence base. AJR Am J Roentgenol 204:967–973

    Article  PubMed  Google Scholar 

  63. Menzel L, Kleber L, Friedrich C et al (2017) Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 65:278–292

    Article  PubMed  Google Scholar 

  64. Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169:337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Abcouwer SF, Lin C-M, Shanmugam S et al (2013) Minocycline prevents retinal inflammation and vascular permeability following ischemia-reperfusion injury. J Neuroinflammation 10:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lloyd E, Somera-Molina K, Van Eldik LJ et al (2008) Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 5:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Cheong CU, Chang CP, Chao CM et al (2013) Etanercept attenuates traumatic brain injury in rats by reducing brain TNF-α contents and by stimulating newly formed neurogenesis. Mediat Inflamm 2013:620837

    Article  CAS  Google Scholar 

  68. Tobinick E, Kim NM, Reyzin G et al (2012) Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs 26:1051–1070

    Article  CAS  PubMed  Google Scholar 

  69. Loane DJ, Stoica BA, Tchantchou F et al (2014) Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodegeneration, and alters microglial polarization after experimental traumatic brain injury. Neurotherapeutics 11:857–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Besson VC, Chen XR, Plotkine M, Marchand-Verrecchia C (2005) Fenofibrate, a peroxisome proliferator-activated receptor α agonist, exerts neuroprotective effects in traumatic brain injury. Neurosci Lett 388:7–12

    Article  CAS  PubMed  Google Scholar 

  71. Wang G, Shi Y, Jiang X et al (2015) HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci U S A 112:2853–2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee JK, Brady KM, Deutsch N (2016) The anesthesiologist’s role in treating abusive head trauma. Anesth Analg 122:1971–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul M. Nikam.

Ethics declarations

Conflicts of interest

Dr. Choudhary is a medical expert in child abuse cases.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikam, R.M., Yue, X., Kandula, V.V. et al. Unravelling neuroinflammation in abusive head trauma with radiotracer imaging. Pediatr Radiol 51, 966–970 (2021). https://doi.org/10.1007/s00247-021-04995-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-021-04995-z

Keywords

Navigation