Skip to main content

Advertisement

Log in

Association Between High Sensitivity Troponin Levels Following Pediatric Orthotopic Heart Transplantation and Intensive Care Unit Resource Utilization

  • Research
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The utility of troponin levels, including high sensitivity troponin T (hs-TnT), after orthotopic heart transplant (OHT) is controversial. Conflicting data exist regarding its use as a marker of acute rejection. Few studies have examined possible associations of hs-TnT levels immediately after OHT with metrics of intensive care unit (ICU) resource utilization or risk of acute rejection. We performed a retrospective cohort chart review including all OHT recipients < 20 years of age at our center between June 2019 and December 2022. Patients were divided into two groups based on supra- or sub-median initial hs-TnT levels (median 3462.5 ng/L). Primary outcome was days requiring ICU-level care, secondary outcomes included days intubated, days requiring positive pressure ventilation (PPV), days on inotropic medications, actual ICU length of stay, Vasoactive Inotrope Scores (VIS) on postoperative days (POD) 0 through 7, and acute rejection at 30 days and one year after OHT. Patients with higher hs-TnT required ICU level care for longer [13.5 (10–17.5) vs. 9.5 (8–12) days, p = 0.01] and spent more days intubated [6 (4–7) vs. 3 (3–5) days, p < 0.001], on PPV [9 (6–15) vs. 6 (5–8.5) days, p = 0.02], and on inotropes [11 (9–14) vs. 8 (7–11) days, p = 0.025]. VIS was only different between groups on POD7 [5 (3–7) vs. 3 (0–5), p = 0.04]. There was no difference in rejection between the groups. Higher hs-TnT immediately following pediatric OHT may predict higher ICU resource utilization, despite no difference in VIS, although it does not predict acute rejection in the first year after OHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rossano JW, Cherikh WS, Chambers DC et al (2018) The international thoracic organ transplant registry of the international society for heart and lung transplantation: twenty-first pediatric heart trans-plantation report—2018; focus theme: multiorgan transplantation. J Heart Lung Transplant 37(10):1184–1195

    Article  PubMed  Google Scholar 

  2. McCulloch MA, Zuckerman WA, Möller T et al (2020) Effects of donor cause of death, ischemia time, inotrope exposure, troponin values, cardiopulmonary resuscitation, electrocardiographic and echocardiographic data on recipient outcomes: a review of the literature. Pediatr Transplant 24(3):e13676. https://doi.org/10.1111/petr.13676

    Article  PubMed  Google Scholar 

  3. Tallaj JA, Pamboukian SV, George JF et al (2014) Have risk factors for mortality after heart transplantation changed over time? Insights from 19 years of cardiac transplant research database study. J Heart Lung Transplant 33(12):1304–1311. https://doi.org/10.1016/j.healun.2014.08.014

    Article  PubMed  Google Scholar 

  4. Hong KN, Iribarne A, Worku B et al (2011) Who is the high-risk recipient? Predicting mortality after heart transplant using pretransplant donor and recipient risk factors. Ann Thorac Surg 92(2):520–527. https://doi.org/10.1016/j.athoracsur.2011.02.086

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kanaan UB, Chiang VW (2004) Cardiac troponins in pediatrics. Pediatr Emerg Care 20(5):323–329. https://doi.org/10.1097/01.pec.0000125664.35690.51

    Article  PubMed  Google Scholar 

  6. Jaffe AS, Ravkilde J, Roberts R et al (2000) It’s time for a change to a troponin standard. Circulation 102:1216

    Article  CAS  PubMed  Google Scholar 

  7. Alpert JS, Thygesen K, Antman E, Bassand JP (2000) Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction [published correction appears in J Am Coll Cardiol 2001 Mar 1;37(3):973]. J Am Coll Cardiol 36(3):959–969. https://doi.org/10.1016/s0735-1097(00)00804-4

    Article  CAS  PubMed  Google Scholar 

  8. Garg P, Morris P, Fazlanie AL et al (2017) Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Intern Emerg Med 12(2):147–155. https://doi.org/10.1007/s11739-017-1612-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Clerico A, Aimo A, Cantinotti M (2021) High-sensitivity cardiac troponins in pediatric population. Clin Chem Lab Med. 60(1):18–32. https://doi.org/10.1515/cclm-2021-0976

    Article  CAS  PubMed  Google Scholar 

  10. Wang AP, Homme JL, Qureshi MY, Sandoval Y, Jaffe AS (2022) High-sensitivity troponin T testing for pediatric patients in the emergency department. Pediatr Cardiol 43(2):350–359. https://doi.org/10.1007/s00246-021-02726-7

    Article  PubMed  Google Scholar 

  11. Boroński B, Piotrowski A, Pągowska-Klimek I (2022) Value of troponin T measurements for prediction of postoperative course and length of ICU stay of children after surgical correction of congenital heart disease. Anaesthesiol Intensive Ther 54(2):114–119. https://doi.org/10.5114/ait.2022.114488

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mori Y, Nakashima Y, Kaneko S, Inoue N, Murakami T (2020) Risk factors for cardiac adverse events in infants and children with complex heart disease scheduled for bi-ventricular repair: prognostic value of pre-operative B-type natriuretic peptide and high-sensitivity Troponin T. Pediatr Cardiol 41(8):1756–1765. https://doi.org/10.1007/s00246-020-02437-5

    Article  PubMed  Google Scholar 

  13. Immer FF, Stocker F, Seiler AM et al (1999) Troponin-I for prediction of early postoperative course after pediatric cardiac surgery. J Am Coll Cardiol 33(6):1719–1723. https://doi.org/10.1016/s0735-1097(99)00061-3

    Article  CAS  PubMed  Google Scholar 

  14. Kojima T, Toda K, Oyanagi T, Yoshiba S, Kobayashi T, Sumitomo N (2020) Early assessment of cardiac Troponin I predicts the postoperative cardiac status and clinical course after congenital heart disease surgery. Heart Vessels 35(3):417–421. https://doi.org/10.1007/s00380-019-01497-9

    Article  PubMed  Google Scholar 

  15. Mildh LH, Pettilä V, Sairanen HI, Rautiainen PH (2006) Cardiac Troponin T levels for risk stratification in pediatric open heart surgery. Ann Thorac Surg 82(5):1643–1648. https://doi.org/10.1016/j.athoracsur.2006.05.014

    Article  PubMed  Google Scholar 

  16. Momeni M, Poncelet A, Rubay J et al (2017) Does postoperative cardiac troponin-I have any prognostic value in predicting midterm mortality after congenital cardiac surgery? J Cardiothorac Vasc Anesth 31(1):122–127. https://doi.org/10.1053/j.jvca.2016.02.018

    Article  CAS  PubMed  Google Scholar 

  17. Bottio T, Vida V, Padalino M, Gerosa G, Stellin G (2006) Early and long-term prognostic value of Troponin-I after cardiac surgery in newborns and children. Eur J Cardiothorac Surg 30(2):250–255. https://doi.org/10.1016/j.ejcts.2006.05.001

    Article  PubMed  Google Scholar 

  18. Coric D, Smith NA (2017) Postoperative troponin measurement as a screening tool for adverse cardiac events in adult patients undergoing moderate or major non-cardiac surgery. Anaesth Intensive Care 45(6):683–687. https://doi.org/10.1177/0310057X1704500606

    Article  CAS  PubMed  Google Scholar 

  19. Writing Committee for the VISION Study Investigators, Devereaux PJ, Biccard BM et al (2017) Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 317(16):1642–1651. https://doi.org/10.1001/jama.2017.4360

    Article  CAS  Google Scholar 

  20. Giannitsis E, Kurz K, Hallermayer K et al (2009) Analytical validation of a high-sensitivity cardiac Troponin T assay. Clin Chem 56:254

    Article  PubMed  Google Scholar 

  21. Sherwood MW, Kristin NL (2014) High-sensitivity troponin assays: evidence, indications, and reasonable use. J Am Heart Assoc. 3(1):e000403. https://doi.org/10.1161/JAHA.113.000403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmermann R, Baki S, Dengler TJ et al (1993) Troponin T release after heart transplantation. Br Heart J 69(5):395–398. https://doi.org/10.1136/hrt.69.5.395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ambrosi P, Kreitmann B, Fromonot J, Habib G, Guieu R (2015) Plasma ultrasensitive cardiac troponin during long-term follow-up of heart transplant recipients. J Card Fail 21(2):103–107. https://doi.org/10.1016/j.cardfail.2014.10.015. (Epub 2014 Nov 3 PMID: 25451703)

    Article  CAS  PubMed  Google Scholar 

  24. Erbel C, Taskin R, Doesch A et al (2013) High-sensitive Troponin T measurements early after heart transplantation predict short- and long-term survival. Transpl Int 26(3):267–272. https://doi.org/10.1111/tri.12024

    Article  CAS  PubMed  Google Scholar 

  25. Fitzsimons SJ, Evans JDW, Rassl DM et al (2021) High-sensitivity cardiac troponin is not associated with acute cellular rejection after heart transplantation [published online ahead of print, 2021 Jun 29]. Transplantation. https://doi.org/10.1097/TP.0000000000003876

    Article  PubMed  Google Scholar 

  26. Fitzsimons S, Evans J, Parameshwar J, Pettit SJ (2018) Utility of troponin assays for exclusion of acute cellular rejection after heart transplantation: a systematic review. J Heart Lung Transplant 37(5):631–638. https://doi.org/10.1016/j.healun.2017.12.008

    Article  PubMed  Google Scholar 

  27. McCartney SL, Patel C, Del Rio JM (2017) Long-term outcomes and management of the heart transplant recipient. Best Pract Res Clin Anaesthesiol 31(2):237–248. https://doi.org/10.1016/j.bpa.2017.06.003

    Article  PubMed  Google Scholar 

  28. Wilhelm MJ (2015) Long-term outcome following heart transplantation: current perspective. J Thorac Dis 7(3):549–551. https://doi.org/10.3978/j.issn.2072-1439.2015.01.46

    Article  PubMed  PubMed Central  Google Scholar 

  29. Colvin MM, Cook JL, Chang P et al (2015) Antibody-mediated rejection in cardiac transplantation: emerging knowledge in diagnosis and management: a scientific statement from the American Heart Association. Circulation 131(18):1608–1639. https://doi.org/10.1161/CIR.0000000000000093

    Article  PubMed  Google Scholar 

  30. Hollander SA, Peng DM, Mills M et al (2018) Pathological antibody-mediated rejection in pediatric heart transplant recipients: Immunologic risk factors, hemodynamic significance, and outcomes. Pediatr Transplant 22(5):e13197. https://doi.org/10.1111/petr.13197

    Article  CAS  PubMed  Google Scholar 

  31. Webber SA, Naftel DC, Parker J et al (2003) Late rejection episodes more than 1 year after pediatric heart transplantation: risk factors and outcomes. J Heart Lung Transplant 22(8):869–875. https://doi.org/10.1016/s1053-2498(02)00819-7

    Article  PubMed  Google Scholar 

  32. Chin C, Naftel DC, Singh TP et al (2004) Risk factors for recurrent rejection in pediatric heart transplantation: a multicenter experience. J Heart Lung Transplant 23(2):178–185. https://doi.org/10.1016/S1053-2498(03)00059-7

    Article  PubMed  Google Scholar 

  33. Austin BA, Taylor DO (2010) Surrogate markers of rejection. Curr Opin Organ Transplant 15(5):645–649. https://doi.org/10.1097/MOT.0b013e32833d7e31

    Article  PubMed  Google Scholar 

  34. Chance JJ, Segal JB, Wallerson G, Kasper E, Hruban RH, Kickler TS, Chan DW (2001) Cardiac Troponin T and C-reactive protein as markers of acute cardiac allograft rejection. Clin Chim Acta 312(1–2):31–39

    Article  CAS  PubMed  Google Scholar 

  35. Wåhlander H, Kjellström C, Holmgren D (2002) Sustained elevated concentrations of cardiac Troponin T during acute allograft rejection after heart transplantation in children. Transplantation 74(8):1130–1135

    Article  PubMed  Google Scholar 

  36. Amarelli C, De Santo LS, Marra C et al (2012) Early graft failure after heart transplant: risk factors and implications for improved donor-recipient matching. Interact Cardiovasc Thorac Surg 15(1):57–62. https://doi.org/10.1093/icvts/ivs113

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mullen JC, Bentley MJ, Scherr KD, Chorney SG, Burton NI, Tymchak WJ, Koshal A, Modry DL (2002) Troponin T and I are not reliable markers of cardiac transplant rejection. Eur J Cardiothorac Surg 22(2):233–237. https://doi.org/10.1016/s1010-7940(02)00293-2. (PMID: 12142191)

    Article  CAS  PubMed  Google Scholar 

  38. Wang CW, Steinhubl SR, Castellani WJ et al (1996) Inability of serum myocyte death markers to predict acute cardiac allograft rejection. Transplantation 62(12):1938–1941. https://doi.org/10.1097/00007890-199612270-00046

    Article  CAS  PubMed  Google Scholar 

  39. Walpoth BH, Celik B, Printzen G, Peheim E, Colombo JP, Schaffner T, Althaus U, Carrel T, Reichenspurner H, Reitz B (1998) Assessment of troponin-T for detection of clinical cardiac rejection. Transpl Int 11(Suppl 1):S502–S507. https://doi.org/10.1007/s001470050528. (PMID: 9665046)

    Article  PubMed  Google Scholar 

  40. Patel PC, Hill DA, Ayers CR, Lavingia B, Kaiser P, Dyer AK, Barnes AP, Thibodeau JT, Mishkin JD, Mammen PP, Markham DW, Stastny P, Ring WS, de Lemos JA, Drazner MH (2014) High-sensitivity cardiac troponin I assay to screen for acute rejection in patients with heart transplant. Circ Heart Fail 7(3):463–469. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000697. (Epub 2014 Apr 14 PMID: 24733367)

    Article  CAS  PubMed  Google Scholar 

  41. Wierzbicki K, Bochenek M, Kędziora A et al (2014) Does the postoperative Troponin I blood concentration measured in the perioperative period influence hemodynamic function of a transplanted heart? Kardiochir Torakochirurgia Pol 11(3):289–293. https://doi.org/10.5114/kitp.2014.45679

    Article  PubMed  PubMed Central  Google Scholar 

  42. Su JA, Kumar SR, Mahmoud H et al (2019) Postoperative serum troponin trends in infants undergoing cardiac surgery. Semin Thorac Cardiovasc Surg 31(2):244–251. https://doi.org/10.1053/j.semtcvs.2018.08.010

    Article  PubMed  Google Scholar 

  43. Hirsch R, Dent CL, Wood MK et al (1998) Patterns and potential value of cardiac troponin I elevations after pediatric cardiac operations. Ann Thorac Surg 65(5):1394–1399. https://doi.org/10.1016/s0003-4975(98)00228-8

    Article  CAS  PubMed  Google Scholar 

  44. Saraiya NR, Sun LS, Jonassen AE, Pesce MA, Queagebeur JM (2005) Serum cardiac Troponin-I elevation in neonatal cardiac surgery is lesion-dependent. J Cardiothorac Vasc Anesth 19(5):620–625. https://doi.org/10.1053/j.jvca.2005.07.004

    Article  CAS  PubMed  Google Scholar 

  45. Tárnok A, Bocsi J, Osmancik P, Häusler HJ, Schneider P, Dähnert I (2005) Cardiac Troponin I release after transcatheter atrial septal defect closure depends on occluder size but not on patient’s age. Heart 91(2):219–222. https://doi.org/10.1136/hrt.2003.029884

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank perfusionist Michael Brewer for his help obtaining data informing cardiopulmonary bypass and aortic cross-clamp times, Dr. Tania Gennell for her help obtaining exact times for ECMO cannulation and flow for relevant patients, and Dr. Arthur Smerling for his insight.

Funding

Funding for this project was received through grants from Colin’s Kids Foundation and Matthew’s Hearts of Hope, Inc.

Author information

Authors and Affiliations

Authors

Contributions

A.B. Performed data analysis, wrote the main manuscript text, and prepared all figures and tables. S.D. Performed patient chart review and data entry. M.D., I.L., B.M., and T.C. assisted with research methodology. I.L. and B.M. provided insight as transplant specialists. Y.Z. assisted with data analysis, statistics consultation, and table preparation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Adam M. Butensky.

Ethics declarations

Conflict of interest

The authors of this study have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butensky, A.M., Desai, S., Dilorenzo, M. et al. Association Between High Sensitivity Troponin Levels Following Pediatric Orthotopic Heart Transplantation and Intensive Care Unit Resource Utilization. Pediatr Cardiol 45, 829–839 (2024). https://doi.org/10.1007/s00246-024-03424-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-024-03424-w

Keywords

Navigation