Skip to main content

Advertisement

Log in

Fates Aligned: Origins and Mechanisms of Ventricular Conduction System and Ventricular Wall Development

  • Riley Symposium
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The cardiac conduction system is a network of distinct cell types necessary for the coordinated contraction of the cardiac chambers. The distal portion, known as the ventricular conduction system, allows for the rapid transmission of impulses from the atrio-ventricular node to the ventricular myocardium and plays a central role in cardiac function as well as disease when perturbed. Notably, its patterning during embryogenesis is intimately linked to that of ventricular wall formation, including trabeculation and compaction. Here, we review our current understanding of the underlying mechanisms responsible for the development and maturation of these interdependent processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miquerol L, Moreno-Rascon N, Beyer S et al (2010) Biphasic development of the mammalian ventricular conduction system. Circ Res 107:153–161. https://doi.org/10.1161/CIRCRESAHA.110.218156

    Article  CAS  PubMed  Google Scholar 

  2. Haissaguerre M, Vigmond E, Stuyvers B et al (2016) Ventricular arrhythmias and the His-Purkinje system. Nat Rev Cardiol 13:155–166. https://doi.org/10.1038/nrcardio.2015.193

    Article  PubMed  Google Scholar 

  3. van Weerd JH, Christoffels VM (2016) The formation and function of the cardiac conduction system. Development 143:197–210. https://doi.org/10.1242/dev.124883

    Article  CAS  PubMed  Google Scholar 

  4. Steiner I (1988) History of Purkinje’s fibers. Cesk Fysiol 37:509–512

    CAS  PubMed  Google Scholar 

  5. Davies F (1930) The conducting system of the bird’s heart. J Anat 64:129–146

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sommer JR, Johnson EA (1968) Cardiac muscle. A comparative study of Purkinje fibers and ventricular fibers. J Cell Biol 36:497–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Samsa LA, Yang B, Liu J (2013) Embryonic cardiac chamber maturation: trabeculation, conduction, and cardiomyocyte proliferation. Am J Med Genet C 163C:157–168. https://doi.org/10.1002/ajmg.c.31366

    Article  Google Scholar 

  8. Rentschler S, Vaidya DM, Tamaddon H et al (2001) Visualization and functional characterization of the developing murine cardiac conduction system. Development 128:1785–1792

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sedmera D, Reckova M, DeAlmeida A et al (2003) Spatiotemporal pattern of commitment to slowed proliferation in the embryonic mouse heart indicates progressive differentiation of the cardiac conduction system. Anat Rec 274:773–777. https://doi.org/10.1002/ar.a.10085

    Article  Google Scholar 

  10. Meysen S, Marger L, Hewett KW et al (2007) Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Dev Biol 303:740–753. https://doi.org/10.1016/j.ydbio.2006.12.044

    Article  CAS  PubMed  Google Scholar 

  11. Kim K-H, Rosen A, Hussein SMI et al (2016) Irx3 is required for postnatal maturation of the mouse ventricular conduction system. Sci Rep 6:19197. https://doi.org/10.1038/srep19197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sedmera D, Pexieder T, Vuillemin M et al (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337

    Article  CAS  PubMed  Google Scholar 

  13. Moorman AFM, Christoffels VM (2003) Cardiac chamber formation: development, genes, and evolution. Physiol Rev 83:1223–1267. https://doi.org/10.1152/physrev.00006.2003

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Chen H, Qu X et al (2013) Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC). Am J Med Genet C 163C:144–156. https://doi.org/10.1002/ajmg.c.31369

    Article  Google Scholar 

  15. Gorza L, Schiaffino S, Vitadello M (1988) Heart conduction system: a neural crest derivative? Brain Res 457:360–366

    Article  CAS  PubMed  Google Scholar 

  16. Gourdie RG, Mima T, Thompson RP, Mikawa T (1995) Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121:1423–1431

    CAS  PubMed  Google Scholar 

  17. Cheng G, Litchenberg WH, Cole GJ et al (1999) Development of the cardiac conduction system involves recruitment within a multipotent cardiomyogenic lineage. Development 126:5041–5049

    CAS  PubMed  Google Scholar 

  18. Jiang X, Rowitch DH, Soriano P et al (2000) Fate of the mammalian cardiac neural crest. Development 127:1607–1616

    CAS  PubMed  Google Scholar 

  19. Delorme B, Dahl E, Jarry-Guichard T et al (1995) Developmental regulation of connexin 40 gene expression in mouse heart correlates with the differentiation of the conduction system. Dev Dyn 204:358–371. https://doi.org/10.1002/aja.1002040403

    Article  CAS  PubMed  Google Scholar 

  20. Delorme B, Dahl E, Jarry-Guichard T et al (1997) Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res 81:423–437

    Article  CAS  PubMed  Google Scholar 

  21. Erokhina IL, Rumyantsev PP (1988) Proliferation and biosynthetic activities of myocytes from conductive system and working myocardium of the developing mouse heart. Light microscopic autoradiographic study. Acta Histochem 84:51–66. https://doi.org/10.1016/S0065-1281(88)80010-2

    Article  CAS  PubMed  Google Scholar 

  22. Sedmera D, Thompson RP (2011) Myocyte proliferation in the developing heart. Dev Dyn 240:1322–1334. https://doi.org/10.1002/dvdy.22650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miquerol L, Bellon A, Moreno N et al (2013) Resolving cell lineage contributions to the ventricular conduction system with a Cx40-GFP allele: a dual contribution of the first and second heart fields. Dev Dyn 242:665–677. https://doi.org/10.1002/dvdy.23964

    Article  CAS  PubMed  Google Scholar 

  24. Später D, Abramczuk MK, Buac K et al (2013) A HCN4 + cardiomyogenic progenitor derived from the first heart field and human pluripotent stem cells. Nat Cell Biol 15:1098–1106. https://doi.org/10.1038/ncb2824

    Article  CAS  PubMed  Google Scholar 

  25. Liang X, Wang G, Lin L et al (2013) HCN4 dynamically marks the first heart field and conduction system precursors. Circ Res 113:399–407. https://doi.org/10.1161/CIRCRESAHA.113.301588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tsai S-Y, Maass K, Lu J et al (2015) Efficient generation of cardiac Purkinje cells from ESCs by activating cAMP signaling. Stem Cell Rep 4:1089–1102. https://doi.org/10.1016/j.stemcr.2015.04.015

    Article  CAS  Google Scholar 

  27. Maass K, Shekhar A, Lu J et al (2015) Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells. Stem Cells 33:1102–1112. https://doi.org/10.1002/stem.1921

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li G, Xu A, Sim S et al (2016) Transcriptomic profiling maps anatomically patterned subpopulations among single embryonic cardiac cells. Dev Cell 39:491–507. https://doi.org/10.1016/j.devcel.2016.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paige SL, Plonowska K, Xu A, Wu SM (2015) Molecular regulation of cardiomyocyte differentiation. Circ Res 116:341–353. https://doi.org/10.1161/CIRCRESAHA.116.302752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Munshi NV (2012) Gene regulatory networks in cardiac conduction system development. Circ Res 110:1525–1537. https://doi.org/10.1161/CIRCRESAHA.111.260026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de la Pompa JL, Epstein JA (2012) Coordinating tissue interactions: notch signaling in cardiac development and disease. Dev Cell 22:244–254. https://doi.org/10.1016/j.devcel.2012.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Christoffels VM, Smits GJ, Kispert A, Moorman AFM (2010) Development of the pacemaker tissues of the heart. Circ Res 106:240–254. https://doi.org/10.1161/CIRCRESAHA.109.205419

    Article  CAS  PubMed  Google Scholar 

  33. Hatcher CJ, Basson CT (2009) Specification of the cardiac conduction system by transcription factors. Circ Res 105:620–630. https://doi.org/10.1161/CIRCRESAHA.109.204123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grego-Bessa J, Luna-Zurita L, del Monte G et al (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429. https://doi.org/10.1016/j.devcel.2006.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rentschler S, Morley GE, Fishman GI (2002) Molecular and functional maturation of the murine cardiac conduction system. In: Cold Spring Harbor symposia on quantitative biology, vol 67. Cold Spring Harbor Laboratory Press, New York, pp 353–361

    Google Scholar 

  36. Hertig CM, Kubalak SW, Wang Y, Chien KR (1999) Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis. J Biol Chem 274:37362–37369

    Article  CAS  PubMed  Google Scholar 

  37. Gourdie RG, Wei Y, Kim D et al (1998) Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci USA 95:6815–6818

    Article  CAS  PubMed  Google Scholar 

  38. Chen H, Zhang W, Sun X et al (2013) Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity. Development 140:1946–1957. https://doi.org/10.1242/dev.089920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rentschler S, Yen AH, Lu J et al (2012) Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation 126:1058–1066. https://doi.org/10.1161/CIRCULATIONAHA.112.103390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khandekar A, Springer S, Wang W et al (2016) Notch-mediated epigenetic regulation of voltage-gated potassium currents. Circ Res 119:1324–1338. https://doi.org/10.1161/CIRCRESAHA.116.309877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moskowitz IPG, Kim JB, Moore ML et al (2007) A molecular pathway including Id2, Tbx5, and Nkx2-5 required for cardiac conduction system development. Cell 129:1365–1376. https://doi.org/10.1016/j.cell.2007.04.036

    Article  CAS  PubMed  Google Scholar 

  42. Jongbloed MRM, Vicente-Steijn R, Douglas YL et al (2011) Expression of Id2 in the second heart field and cardiac defects in Id2 knock-out mice. Dev Dyn 240:2561–2577. https://doi.org/10.1002/dvdy.22762

    Article  CAS  PubMed  Google Scholar 

  43. Zhang S-S, Kim K-H, Rosen A et al (2011) Iroquois homeobox gene 3 establishes fast conduction in the cardiac His-Purkinje network. Proc Natl Acad Sci USA 108:13576–13581. https://doi.org/10.1073/pnas.1106911108

    Article  PubMed  Google Scholar 

  44. Koizumi A, Sasano T, Kimura W et al (2016) Genetic defects in a His-Purkinje system transcription factor, IRX3, cause lethal cardiac arrhythmias. Eur Heart J 37:1469–1475. https://doi.org/10.1093/eurheartj/ehv449

    Article  CAS  PubMed  Google Scholar 

  45. Thomas PS, Kasahara H, Edmonson AM et al (2001) Elevated expression of Nkx-2.5 in developing myocardial conduction cells. Anat Rec 263:307–313

    Article  CAS  PubMed  Google Scholar 

  46. Pashmforoush M, Lu JT, Chen H et al (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117:373–386

    Article  CAS  PubMed  Google Scholar 

  47. Tanaka M, Berul CI, Ishii M et al (2002) A mouse model of congenital heart disease: cardiac arrhythmias and atrial septal defect caused by haploinsufficiency of the cardiac transcription factor Csx/Nkx2.5. In: Cold Spring Harbor symposia on quantitative biology, vol 67, pp 317–325

  48. Jay PY, Harris BS, Maguire CT et al (2004) Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest 113:1130–1137. https://doi.org/10.1172/JCI19846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schott JJ, Benson DW, Basson CT et al (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111

    Article  CAS  PubMed  Google Scholar 

  50. Chen H, Shi S, Acosta L et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–2231. https://doi.org/10.1242/dev.01094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shin CH, Liu Z-P, Passier R et al (2002) Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110:725–735

    Article  CAS  PubMed  Google Scholar 

  52. Ismat FA, Zhang M, Kook H et al (2005) Homeobox protein Hop functions in the adult cardiac conduction system. Circ Res 96:898–903. https://doi.org/10.1161/01.RES.0000163108.47258.f3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benjamin EJ, Blaha MJ, Chiuve SE et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135:e146–e603. https://doi.org/10.1161/CIR.0000000000000485

    Article  PubMed  PubMed Central  Google Scholar 

  54. John RM, Tedrow UB, Koplan BA et al (2012) Ventricular arrhythmias and sudden cardiac death. Lancet 380:1520–1529. https://doi.org/10.1016/S0140-6736(12)61413-5

    Article  PubMed  Google Scholar 

  55. Scheinman MM (2009) Role of the His-Purkinje system in the genesis of cardiac arrhythmia. Heart Rhythm 6:1050–1058. https://doi.org/10.1016/j.hrthm.2009.03.011

    Article  PubMed  Google Scholar 

  56. Kim EE, Shekhar A, Lu J et al (2014) PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest 124:5027–5036. https://doi.org/10.1172/JCI77495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Herron TJ, Milstein ML, Anumonwo J et al (2010) Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 7:1122–1128. https://doi.org/10.1016/j.hrthm.2010.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  58. Morley GE, Danik SB, Bernstein S et al (2005) Reduced intercellular coupling leads to paradoxical propagation across the Purkinje-ventricular junction and aberrant myocardial activation. Proc Natl Acad Sci USA 102:4126–4129. https://doi.org/10.1073/pnas.0500881102

    Article  CAS  PubMed  Google Scholar 

  59. Behradfar E, Nygren A, Vigmond EJ (2014) The role of Purkinje-myocardial coupling during ventricular arrhythmia: a modeling study. PLoS ONE 9:e88000. https://doi.org/10.1371/journal.pone.0088000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gude NA, Emmanuel G, Wu W et al (2008) Activation of Notch-mediated protective signaling in the myocardium. Circ Res 102:1025–1035. https://doi.org/10.1161/CIRCRESAHA.107.164749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bezzina CR, Barc J, Mizusawa Y et al (2013) Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. Nat Genet 45:1044–1049. https://doi.org/10.1038/ng.2712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Benson DW, Silberbach GM, Kavanaugh-McHugh A et al (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573. https://doi.org/10.1172/JCI8154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xie H, Chen X, Chen N, Zhou Q (2017) Sudden death in a male infant due to histiocytoid cardiomyopathy: an autopsy case and review of the literature. Am J Forensic Med Pathol 38:32–34. https://doi.org/10.1097/PAF.0000000000000289

    Article  PubMed  Google Scholar 

  64. Finsterer J (2008) Histiocytoid cardiomyopathy: a mitochondrial disorder. Clin Cardiol 31:225–227. https://doi.org/10.1002/clc.20224

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH Office of Director’s Pioneer Award LM012179-03, the American Heart Association Established Investigator Award 17EIA33410923, the Department of Pediatrics and Division of Pediatric Cardiology at Lucille Packard Children’s Hospital, the Stanford Cardiovascular Institute, the Stanford Division of Cardiovascular Medicine, Department of Medicine, the Institute for Stem Cell Biology and Regenerative Medicine, and an endowed faculty scholar award from the Stanford Child Health Research Institute/Lucile Packard Foundation for Children (S.M.W). This was also supported by the Training Grant (T32) entitled Research Training in Myocardial Biology at Stanford (NIH 2 T32 HL094274) (W.R.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Wu.

Ethics declarations

Conflict of interest

W.R.G. declares that he has no conflict of interest. S.M.W. declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodyer, W.R., Wu, S.M. Fates Aligned: Origins and Mechanisms of Ventricular Conduction System and Ventricular Wall Development. Pediatr Cardiol 39, 1090–1098 (2018). https://doi.org/10.1007/s00246-018-1869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-018-1869-9

Keywords

Navigation