Skip to main content

Advertisement

Log in

Noninvasive Assessment of Pulmonary Artery Pressure in Patients with Extracardiac Conduit Total Cavopulmonary Connection

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

To assess quantitative measurement of mean pulmonary artery pressure (PAP) in extracardiac total cavopulmonary connection (TCPC) patients by noninvasive echocardiographic inferior vena cava collapsibility index (IVC-CI) and also correlation between the peripheral vein pressure and mean PAP. In 19 TCPC patients with at least 1-year follow-up after completion of TCPC, complete echocardiography including IVC-CI was recorded. All patients underwent cardiac catheterization for mean PAP pressure, peripheral vein pressure (PVP) and contrast study. Different cutoff points of mean PAP were analyzed, and based on the highest cutoff point, patients were categorized into two groups: mean PAP < 17 mmHg (acceptable) and > = 17 mmHg (high) for comparison analysis. Between 2006 and 2015, from 43 patients who had undergone TCPC, nineteen patients with a mean age 12.9 ± 6.6 years and mean follow-up time of 3.4 ± 1.9 years were included in this study. Mean PAP was 14.6 ± 3.97 (range 8–22 mmHg). Thirteen (68 %) patients had PAP < 17 mmHg. No significant statistical difference was detected with respect to age, sex, type of congenital heart disease and fenestration between these two groups. But, right ventricular dominancy was more prevalent in the high PAP group (50 % vs. 7.7 % P value 0.03). IVC-CI had a correlation with mean PAP (r 0.67, P < 0.001). IVC-CI < 21.8 % can predict PAP > = 17 mmHg with 83 % sensitivity and 100 % specificity. Regression analysis proposed an equation for PAP measurement: PAP (mmHg) = 20.2097−0.1796 × (IVC-CI), (r2 = 0.56). Peripheral vein pressure measurement also showed a good correlation with mean PAP and may be used to estimate PAP with the following equation: PAP (mmHg) = 0. 8675 × PVP, (r 0.90, P < 0.0001). In conclusion, IVC-CI as noninvasive and peripheral vein pressure measurement as a minimal invasive method may be useful for quantitative estimation of PAP in patients with extracardiac TCPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nayak S, Booker PD (2008) The Fontan circulation. Continuing Education in Anaesthesia, Critical Care & Pain 8(1):26–30. doi:10.1093/bjaceaccp/mkm047

    Article  Google Scholar 

  2. Driscoll DJ (2007) Long-term results of the Fontan operation. Pediatr Cardiol 28(6):438–442. doi:10.1007/s00246-007-9003-4

    Article  CAS  PubMed  Google Scholar 

  3. Hosein RB, Clarke AJ, McGuirk SP, Griselli M, Stumper O, De Giovanni JV, Barron DJ, Brawn WJ (2007) Factors influencing early and late outcome following the Fontan procedure in the current era. The ‘Two Commandments’? European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 31 (3):344-352; discussion 353. doi:10.1016/j.ejcts.2006.11.043

  4. Fujii Y, Sano S, Kotani Y, Yoshizumi K, Kasahara S, Ishino K, Akagi T (2009) Midterm to long-term outcome of total cavopulmonary connection in high-risk adult candidates. The Annals of thoracic surgery 87 (2):562-570; discussion 570. doi:10.1016/j.athoracsur.2008.10.040

  5. Goldstein BH, Holzer RJ, Trucco SM, Porras D, Murphy J, Foerster SR, El-Said HG, Beekman RH 3rd, Bergersen L (2015) Practice Variation in Single-Ventricle Patients Undergoing Elective Cardiac Catheterization: a Report from the Congenital Cardiac Catheterization Project on Outcomes (C3PO). Congenital heart disease. doi:10.1111/chd.12299

    Google Scholar 

  6. Stawicki SP, Braslow BM, Panebianco NL, Kirkpatrick JN, Gracias VH, Hayden GE, Dean AJ (2009) Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: correlations with CVP. J Am Coll Surg 209(1):55–61

    Article  PubMed  Google Scholar 

  7. Yildirimturk O, Tayyareci Y, Erdim R, Ozen E, Yurdakul S, Aytekin V, Demiroglu IC, Aytekin S (2011) Assessment of right atrial pressure using echocardiography and correlation with catheterization. J Clin Ultrasound 39(6):337–343. doi:10.1002/jcu.20837

    Article  PubMed  Google Scholar 

  8. Thanakitcharu P, Charoenwut M, Siriwiwatanakul N (2013) Inferior vena cava diameter and collapsibility index: a practical non-invasive evaluation of intravascular fluid volume in critically-ill patients. Journal of the Medical Association of Thailand = Chotmaihet thangphaet 96 Suppl 3:S14-22

  9. Hsia TY, Khambadkone S, Deanfield JE, Taylor JF, Migliavacca F, De Leval MR (2001) Subdiaphragmatic venous hemodynamics in the Fontan circulation. J Thorac Cardiovasc Surg 121(3):436–447. doi:10.1067/mtc.2001.112527

    Article  CAS  PubMed  Google Scholar 

  10. Nakazawa M, Nojima K, Okuda H, Imai Y, Nakanishi T, Kurosawa H, Takao A (1987) Flow dynamics in the main pulmonary artery after the Fontan procedure in patients with tricuspid atresia or single ventricle. Circulation 75(6):1117–1123

    Article  CAS  PubMed  Google Scholar 

  11. Tatum GH, Sigfusson G, Ettedgui JA, Myers JL, Cyran SE, Weber HS, Webber SA (2006) Pulmonary artery growth fails to match the increase in body surface area after the Fontan operation. Heart 92(4):511–514. doi:10.1136/hrt.2005.070243

    Article  CAS  PubMed  Google Scholar 

  12. Kansy A, Brzezinska-Rajszys G, Zubrzycka M, Mirkowicz-Malek M, Maruszewski P, Manowska M, Maruszewski B (2013) Pulmonary artery growth in univentricular physiology patients. Kardiol Pol 71(6):581–587. doi:10.5603/kp.2013.0121

    Article  PubMed  Google Scholar 

  13. Chen H, Hong H, Zhu Z, Lu Y, Sun Q, Liu Y, Liu J (2013) Extracardiac Fontan with direct cavopulmonary connections: midterm results. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 43(2):318–323. doi:10.1093/ejcts/ezs288

    Article  Google Scholar 

  14. Nakano T, Kado H, Tatewaki H, Hinokiyama K, Oda S, Ushinohama H, Sagawa K, Nakamura M, Fusazaki N, Ishikawa S (2015) Results of extracardiac conduit total cavopulmonary connection in 500 patientsdagger. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery 48(6):825–832. doi:10.1093/ejcts/ezv072

    Article  Google Scholar 

  15. Kaulitz R, Ziemer G, Paul T, Peuster M, Bertram H, Hausdorf G (2002) Fontan-type procedures: residual lesions and late interventions. The Annals of thoracic surgery 74(3):778–785

    Article  PubMed  Google Scholar 

  16. Bergersen L, Gauvreau K, Foerster SR, Marshall AC, McElhinney DB, Beekman RH 3rd, Hirsch R, Kreutzer J, Balzer D, Vincent J, Hellenbrand WE, Holzer R, Cheatham JP, Moore JW, Burch G, Armsby L, Lock JE, Jenkins KJ (2011) Catheterization for Congenital Heart Disease Adjustment for Risk Method (CHARM). JACC Cardiovascular interventions 4(9):1037–1046. doi:10.1016/j.jcin.2011.05.021

    Article  PubMed  Google Scholar 

  17. Stawicki SP, Adkins EJ, Eiferman DS, Evans DC, Ali NA, Njoku C, Lindsey DE, Cook CH, Balakrishnan JM, Valiaveedan S, Galwankar SC, Boulger CT, Springer AN, Bahner DP (2014) Prospective evaluation of intravascular volume status in critically ill patients: does inferior vena cava collapsibility correlate with central venous pressure? The journal of trauma and acute care surgery 76 (4):956-963; discussion 963-954. doi:10.1097/ta.0000000000000152

  18. Innelli P, Esposito R, Olibet M, Nistri S, Galderisi M (2009) The impact of ageing on right ventricular longitudinal function in healthy subjects: a pulsed tissue Doppler study. European journal of echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology 10(4):491–498. doi:10.1093/ejechocard/jen313

    Article  Google Scholar 

  19. Kutty S, Li L, Hasan R, Peng Q, Rangamani S, Danford DA (2014) Systemic venous diameters, collapsibility indices, and right atrial measurements in normal pediatric subjects. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography 27(2):155–162. doi:10.1016/j.echo.2013.09.002

    Article  Google Scholar 

  20. Iwamoto Y, Tamai A, Kohno K, Masutani S, Okada N, Senzaki H (2011) Usefulness of respiratory variation of inferior vena cava diameter for estimation of elevated central venous pressure in children with cardiovascular disease. Circulation journal: official journal of the Japanese Circulation Society 75(5):1209–1214

    Article  Google Scholar 

  21. De Vecchis R, Baldi C (2015) Inferior Vena Cava and Hemodynamic Congestion. Research in cardiovascular medicine 4(3):e28913. doi:10.5812/cardiovascmed.28913v2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Milhoan KA, Levy DJ, Shields N, Rothman A (2004) Upper extremity peripheral venous pressure measurements accurately reflect pulmonary artery pressures in patients with cavopulmonary or Fontan connections. Pediatr Cardiol 25(1):17–19. doi:10.1007/s00246-003-0438-y

    Article  CAS  PubMed  Google Scholar 

  23. Amoozgar H, Ajami GH, Borzuoee M, Amirghofran AA, Ebrahimi P (2011) Peripheral venous pressure as a predictor of central venous pressure in continuous monitoring in children. Iranian Red Crescent medical journal 13(5):342–345

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Amoozgar H, Behniafard N, Borzoee M, Ajami GH (2008) Correlation between peripheral and central venous pressures in children with congenital heart disease. Pediatr Cardiol 29(2):281–284. doi:10.1007/s00246-007-9067-1

    Article  CAS  PubMed  Google Scholar 

  25. Leipoldt CC, McKay WP, Clunie M, Miller G (2006) Peripheral venous pressure predicts central venous pressure poorly in pediatric patients. Can JAnaesth Journal canadien d’anesthesie 53(12):1207–1212. doi:10.1007/bf03021582

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express special thanks to Mrs. Fatemh Beladi, the special nurse and coordinator of pediatric Echo laboratory, for her valuable assistance during the study. The authors would like to thank Shiraz University of Medical Sciences, Shiraz, Iran and also Center for Development of Clinical Research of Nemazee Hospital and Dr. Nasrin Shokrpour for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mohammadi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajami, G.h., Mohammadi, H., Amirghofran, A.A. et al. Noninvasive Assessment of Pulmonary Artery Pressure in Patients with Extracardiac Conduit Total Cavopulmonary Connection. Pediatr Cardiol 37, 1361–1369 (2016). https://doi.org/10.1007/s00246-016-1442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-016-1442-3

Keywords

Navigation